Accelerating Spark MLlib and DataFrame with Vector Processor “SX-Aurora TSUBASA”

Takeo Hosomi
Takuya Araki, Ph.D.

Data Science Research Laboratories
NEC Corporation

Dr. Erich Focht
Senior Manager R&D
NEC Deutschland GmbH
Summary

NEC released new vector processor SX-Aurora TSUBASA
- Different characteristics than GPGPU:
 - Larger memory and higher memory bandwidth
 - Compatible with standard programming languages

Vector processor evolved from HPC
- Optimized for unified Big Data analytics
- Especially suitable for statistical ML

Packaged with machine learning middleware in C++/MPI
- Distributed and vectorized implementation
- Adapts Apache Spark APIs
- ~100x faster than Spark on x86
What is a Vector Processor?

Processes many elements with one instruction, which is supported by large memory bandwidth

Scalar processor
Unit of computation is small
Suitable for web server, etc.

Vector processor
Computes many elements at once
Suitable for simulation, AI, Big Data, etc.

<table>
<thead>
<tr>
<th>Data</th>
<th>Scalar computation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12TB/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Vector computation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.53TB/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Scalar processor: Computes many elements at once
- Vector processor: Suitable for simulation, AI, Big Data, etc.

- Scalar processor: Unit of computation is small
- Vector processor: Unit of small computation

Data and Result

- 256
- 0.12TB/s
- 1.53TB/s

Orchestrating a brighter world
© NEC Corporation 2019
New Vector Processor System “SX-Aurora TSUBASA”

Supercomputer

Downsized super computer:
Can be used as an accelerator for Big Data and AI
On-card Vector Processor (Vector Engine)

- NEC-designed vector processor
- PCIe card implementation
- 8-10 cores / processor
- 6.14TF performance (single precision)
- 1.53TB/s memory bandwidth, 48GB memory
- Standard programing interface (C/C++/Fortran)
Processor Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector length</td>
<td>256 words (16k bits)</td>
</tr>
<tr>
<td>cores/CPU</td>
<td>8</td>
</tr>
<tr>
<td>frequency</td>
<td>1.6GHz</td>
</tr>
<tr>
<td>core performance</td>
<td>307GF (DP) 614GF (SP)</td>
</tr>
<tr>
<td>CPU performance</td>
<td>2.45TF (DP) 4.91TF (SP)</td>
</tr>
<tr>
<td>cache capacity</td>
<td>16MB shared</td>
</tr>
<tr>
<td>Memory bandwidth</td>
<td>1.2TB/s</td>
</tr>
<tr>
<td>Memory capacity</td>
<td>48GB</td>
</tr>
</tbody>
</table>

Diagram:
- **VE1.0 Specification**
 - Core performance:
 - 307GF (DP)
 - 614GF (SP)
 - CPU performance:
 - 2.45TF (DP)
 - 4.91TF (SP)
 - Cache capacity: 16MB shared
 - Memory bandwidth: 1.2TB/s
 - Memory capacity: 48GB

- **Diagram Elements**:
 - **Software controllable cache**: 16MB
 - **HBM2 memory x 6**:
 - 1.2TB/s
 - 0.4TB/s
 - 3TB/s

© NEC Corporation 2019
GPGPU and Vector Engine Execution Models

GPGPU: Offloading Model

Parts of App. are executed on GPGPU

Vector Engine: Native Model

Whole App. is executed on VE

Advantage of Native Model
✓ Can reduce the data transfer between x86 and Vector Engine
Usability

Programing Environment

```
$ vi sample.c
$ ncc sample.c
```

Vector Cross Compiler

automatic vectorization, automatic parallelization

- OS: RedHat Linux, Cent OS
- Fortran: F2003, F2008(partially)
- C: C11
- C++: C++14
- OpenMP: OpenMP4.5
- MPI: MPI3.1
- LLVM-VE: w/ intrinsics, RV, OMP Tgt, experimental

Execution Environment

```
$ ve_exec ./a.out
```

x86

execution
Why Vector Engine?

- High memory bandwidth and large memory capacity
- Supports native execution model
- Standard programing model
- Scale to multiple vector processors
 - Direct data transfer among multiple vector processors through PCIe and InfiniBand
AI/ML on SX-Aurora TSUBASA

- AI/ML that requires memory performance can be well accelerated
- Provide frameworks for easy utilization
Frovedis: Framework of vectorized and distributed data analytics
Frovedis: Framework Of Vectorized and Distributed data analytics

- C++ framework similar to Spark
 - Supports Spark/Python interface
- MPI is used for high performance communication
- Optimized for SX-Aurora TSUBASA (also works on x86)

Open Source! github.com/frovedis

Spark / Python Interface

Matrix Library Machine Learning DataFrame

Frovedis Core
Frovedis Core

- Provides Spark core-like functionalities (e.g. map, reduce)
 - Internally uses MPI to implement distributed processing
 - Inherently supports multiple cards/servers
- Users need not be aware of MPI to write distributed processing code
 - Write functions in C++
 - Provide functions to the framework to run them in parallel
- Example: double each element of distributed variable

```cpp
int two_times(int i) {return i * 2;}
int main(...) {
    ... 
    dvector<int> r = d1.map(two_times);
}
```
Scatter a vector; double each element; then gather

```
#include <frovedis.hpp>
using namespace frovedis;

int two_times(int i) {return i*2;}

int main(int argc, char* argv[]) {
    use_frovedis use(argc, argv);

    std::vector<int> v = {1,2,3,4,5,6,7,8};
    dvector<int> d1 = make_dvector_scatter(v);
    dvector<int> d2 = d1.map(two_times);
    std::vector<int> r = d2.gather();
}
```

Do not have to be aware of MPI (SPMD programming style)
- Looks more like a sequential program
Works as an MPI program

```cpp
#include <frovedis.hpp>
using namespace frovedis;

int two_times(int i) {return i*2;}

int main(int argc, char* argv[]) {
  use_frovedis use(argc, argv);

  std::vector<int> v = {1,2,3,4,5,6,7,8};
  dvector<int> d1 = make_dvector_scatter(v);
  dvector<int> d2 = d1.map(two_times);
  std::vector<int> r = d2.gather();
}
```

MPI_Init is called in the constructor, then branch:
- rank 0: execute the below statements
- rank 1-N: wait for RPC request from rank 0

In the destructor of “use”, MPI_Finalize is called and send RPC request to rank 1-N to stop the program

Rank 0 sends RPC request to rank 1-N to do the work
Matrix Library

Implemented using Frovedis core and existing MPI libraries[*]
[*] ScaLAPACK/PBLAS, LAPACK/BLAS, Parallel ARPACK

Supports dense and sparse matrix of various formats
- Dense: row-major, column-major, block-cyclic
- Sparse: CRS, CCS, ELL, JDS, JDS/CRS Hybrid (for better vectorization)

Provides basic matrix operations and linear algebra
- Dense: matrix multiply, solve, transpose, etc.
- Sparse: matrix-vector multiply (SpMV), transpose, etc.

Example

```cpp
blockcyclic_matrix<double> A = X * Y; // mat mul
gesv(A, b);  // solve Ax = b
```
Machine Learning Library

Supported algorithms:

- Linear model
 - Logistic Regression
 - Multinominal Logistic Regression
 - Linear Regression
 - Linear SVM
- ALS
- K-means
- Preprocessing
 - SVD, PCA
- Word2vec
- Factorization Machines
- Decision Tree
- Naïve Bayes
- Graph algorithms
 - Shortest Path, PageRank, Connected Components
- Frequent Pattern Mining
- Spectral Clustering
- Hierarchical Clustering
- Latent Dirichlet Allocation
- Deep Learning (MLP, CNN)
- Random Forest
- Gradient Boosting Decision Tree

We will support more!

Implemented with Frovedis Core and Matrix Library

- Supports both dense and sparse data
- Sparse data support is important in large scale machine learning
DataFrame

- Supports similar interface as Spark DataFrame
 - Select, Filter, Sort, Join, Group by/Aggregate
 - (SQL interface is not supported yet)

- Implemented as distributed column store
 - Each column is represented as distributed vector
 - Each operation only scans argument columns: other columns are created when necessary (late materialization)

- Reduces size of data to access
Writing C++ programs is sometimes tedious, so we created a wrapper interface to Spark
 • Call the framework through the same Spark API
 • Users do not have to be aware of vector hardware

Implementation: created a server with the functionalities
 • Receives RPC request from Spark and executes ML algorithm, etc.
 • Only pre-built algorithms can be used from Spark

Other languages can also be supported by this architecture
 • Currently Python is supported (scikit-learn API)
How it works

- Rank 0 of the Frovedis server waits for RPC from driver of Spark
- Data communication is done in parallel
 - All workers/ranks send/receive data in parallel
 - Assuming that the data can fit in the memory of the Frovedis server
Programming Interface

Provides same interface as the Spark’s MLlib

Original Spark program: logistic regression

```scala
... import org.apache.spark.mllib.classification.LogisticRegressionWithSGD ...
val model = LogisticRegressionWithSGD.train(data)
...
```

Change import

```scala
... import com.nec.frovedis.mllib.classification.LogisticRegressionWithSGD ...
FrovedisServer.initialize(...) ...
val model = LogisticRegressionWithSGD.train(data)
FrovedisServer.shut_down() ...
```

Same API (no change)

Start/Stop server
Python (scikit-learn) Interface

Original Python program: logistic regression

```python
... from sklearn.linear_model import LogisticRegression ... clf = LogisticRegression(...).fit(X, y) ...
```

Change import

```python
... from frovedis.mllib.linear_model import LogisticRegression ... FrovedisServer.initialize(...) clf = LogisticRegression(...).fit(X, y) FrovedisServer.shut_down() ...
```

Same API (no change)

Start/Stop server
YARN Support

Resource allocation by YARN is also supported
- Implemented in the collaboration with Cloudera (formerly Hortonworks) team

Implementation:
- YARN is modified to support Vector Engine (VE) as resource (like GPU)
- Created a wrapper program of mpirun, which works as YARN client
 - Obtain VE from YARN Resource Manager, and run MPI program on the given VE
- Used the wrapper as the server invocation command
 - Specified in FrovedisServer.initialize(...)
Xeon (Gold 6126) 1 socket vs 1x VE10B, with sparse data (w/o I/O)

- LR uses CTR data provided by Criteo (1/4 of the original, 6GB)
- K-means and SVD used Wikipedia doc-term matrix (10GB)
- Spark version: 2.2.1
Performance Evaluation: Machine Learning

Xeon (Gold 6226) 1 socket vs 1 VE10BE with sparse data (w/o I/O)

- LR uses CTR data provided by Criteo (1/4 of the original, 6GB) Spark version 2.2.1
- K-means and SVD used Wikipedia doc-term matrix (10GB) Spark version 3.0.0
Performance Evaluation: Machine Learning

Xeon (Gold 6226) 2 socket vs 1 VE10BE with sparse data (w/o I/O)

- LR uses CTR data provided by Criteo (1/4 of the original, 6GB) Spark version 2.2.1
- K-means and SVD used Wikipedia doc-term matrix (10GB) Spark version 3.0.0
Performance Evaluation: DataFrame

Evaluated with TPC-H SF-20

- Q1: group by/aggregate
- Q3: filter, join, group by/aggregate
- Q5: filter, join, group by/aggregate (larger join)
- Q6: filter, group by/aggregate

XEON Gold 6226, Aurora A311-8 with VE10BE
Pointers and Resources

- Top README.md explains how to install
- Check out Releases

Start with Tutorials for Python/Spark

Continue with Manuals of Python/Spark API

Performance benchmark and tips to improve performance
- https://github.com/frovedis/benchmark/blob/master/Tips.md
Conclusion

NEC released new vector processor SX-Aurora TSUBASA that can accelerate data analytics and machine learning applications.

We have developed data analytics middleware Frovedis for SX-Aurora TSUBASA.

We show a 10x to 100x performance improvement on several machine learning and data frame processing.

NEC-X has opened VEDAC lab for accessing SX-Aurora TSUBASA AI platform with Frovedis.