

Accelerating Spark MLlib and DataFrame with Vector Processor "SX-Aurora TSUBASA"

Takeo Hosomi Takuya Araki, Ph.D.

Data Science Research Laboratories NEC Corporation Dr. Erich Focht Senior Manager R&D NEC Deutschland GmbH

© NEC Corporation 2019

Summary

NEC released new vector processor SX-Aurora TSUBASA

- Different characteristics than GPGPU:
 - Larger memory and higher memory bandwidth
 - Compatible with standard programming languages

Vector processor evolved from HPC

- Optimized for unified Big Data analytics
- Especially suitable for statistical ML

Packaged with machine learning middleware in C++/MPI

- Distributed and vectorized implementation
- Adapts Apache Spark APIs
- ~100x faster than Spark on x86

What is a Vector Processor ?

Processes many elements with one instruction, which is supported by large memory bandwidth

Scalar processor

Unit of computation is small Suitable for web server, etc.

Vector processor

Computes many elements at once Suitable for simulation, AI, Big Data, etc.

New Vector Processor System "SX-Aurora TSUBASA"

Downsized super computer: Can be used as an accelerator for Big Data and AI

On-card Vector Processor (Vector Engine)

- NEC-designed vector processor
- PCIe card implementation
- 8-10 cores / processor
- 6.14TF performance (single precision)
- 1.53TB/s memory bandwidth,

48GB memory

- Standard programing interface
- (C/C++/Fortran)

Processor Specifications

VE1.0 Specification 2.45**T**F vector length 256 words 307GF core core core (16k bits) core core core core cores/CPU 8 0.4TB/s frequency 1.6GHz 307GF(DP) core performance 3TB/s 614GF(SP) Software controllable cache **CPU** performance 2.45TF(DP) **16MB** 4.91TF(SP) 16MB shared cache capacity .2TB/ Memory bandwidth 1.2TB/s Memory capacity **48GB**

HBM2 memory x 6

GPGPU and Vector Engine Execution Models

GPGPU: Offloading Model

Parts of App. are executed on GPGPU

Vector Engine: Native Model

Whole App. is executed on VE

Advantage of Native Model

 Can reduce the data transfer between x86 and Vector Engine

Usability

Programing Environment

Execution Environment

Vector Cross Compiler

automatic vectorization, automatic parallelization

OS:	RedHat Linux, Cent OS
Fortran:	F2003, F2008(partially)
C:	C11
C++:	C++14
OpenMP:	OpenMP4.5
MPI:	MPI3.1
LLVM-VE	w/ intrinsics, RV, OMP Tgt, experimental

Why Vector Engine?

Can accelerate memory intensive workloads

- ✓ High memory bandwidth and large memory capacity
- ✓ Supports native execution model
- ✓ Standard programing model
- ✓ Scale to multiple vector processors
 - Direct data transfer among multiple vector processors through PCIe and InfiniBand

AI/ML on SX-Aurora TSUBASA

AI/ML that requires memory performance can be well accelerated
Provide frameworks for easy utilization

Frovedis: Framework of vectorized and distributed data analytics

Frovedis: FRamework Of VEctorized and DIStributed data analytics

C++ framework similar to Spark

Supports Spark/Python interface

MPI is used for high performance communication
 Optimized for SX-Aurora TSUBASA (also works on x86)

Open Source! github.com/frovedis

Frovedis Core

Provides Spark core-like functionalities (e.g. map, reduce)

- Internally uses MPI to implement distributed processing
- Inherently supports multiple cards/servers
- Users need not be aware of MPI to write distributed processing code
 - Write functions in C++
 - Provide functions to the framework to run them in parallel

Example: double each element of distributed variable

```
int two_times(int i) {return i * 2;}

int main(...) {

...

distributed variable

...

dvector<int> r = d1.map(two_times);

}

run

run
```


Complete Sample Program (1/2)

Do not have to be aware of MPI (SPMD programming style)

Looks more like a sequential program

Complete Sample Program (2/2)

Works as an MPI program

Matrix Library

[*] ScaLAPACK/PBLAS, LAPACK/BLAS, Parallel ARPACK

Supports dense and sparse matrix of various formats

- Dense: row-major, column-major, block-cyclic
- Sparse: CRS, CCS, ELL, JDS, JDS/CRS Hybrid (for better vectorization)

Provides basic matrix operations and linear algebra

- Dense: matrix multiply, solve, transpose, etc.
- Sparse: matrix-vector multiply (SpMV), transpose, etc.

Example

blockcyclic_matrix<double> A = X * Y; // mat mul
gesv(A, b); // solve Ax = b

Machine Learning Library

Implemented with Frovedis Core and Matrix Library

- ✓ Supports both dense and sparse data
- \checkmark Sparse data support is important in large scale machine learning

Supported algorithms:

- Linear model
 - Logistic Regression
 - Multinominal Logistic Regression
 - Linear Regression
 - Linear SVM
- ALS
- K-means
- Preprocessing
 SVD, PCA

- Word2vec
- Factorization Machines
- Decision Tree
- Naïve Bayes
- Graph algorithms
 - Shortest Path, PageRank, Connected Components

- Frequent Pattern Mining
- Spectral Clustering
- Hierarchical Clustering
- Latent Dirichlet Allocation
- Deep Learning (MLP, CNN)
- Random Forest
- Gradient Boosting Decision Tree

We will support more!

Supports similar interface as Spark DataFrame

- Select, Filter, Sort, Join, Group by/Aggregate
- (SQL interface is not supported yet)

Implemented as distributed column store

- Each column is represented as distributed vector
- Each operation only scans argument columns: other columns are created when necessary (late materialization)

Reduces size of data to access

Writing C++ programs is sometimes tedious, so we created a wrapper interface to Spark

- Call the framework through the same Spark API
- Users do not have to be aware of vector hardware

Implementation: created a server with the functionalities

- Receives RPC request from Spark and executes ML algorithm, etc.
- Only pre-built algorithms can be used from Spark

Other languages can also be supported by this architecture

Currently Python is supported (scikit-learn API)

How it works

Rank 0 of the Frovedis server waits for RPC from driver of Spark Data communication is done in parallel

- All workers/ranks send/receive data in parallel
- Assuming that the data can fit in the memory of the Frovedis server

Programming Interface

Provides same interface as the Spark's MLlib

Original Spark program: logistic regression

Python (scikit-learn) Interface

Original Python program: logistic regression

YARN Support

Resource allocation by YARN is also supported

Implemented in the collaboration with Cloudera (formerly Hortonworks) team

Implementation:

- YARN is modified to support Vector Engine (VE) as resource (like GPU)
- Created a wrapper program of mpirun, which works as YARN client
 Obtain VE from YARN Resource Manager, and run MPI program on the given VE
- Used the wrapper as the server invocation command

• Specified in FrovedisServer.initialize(...)

Performance Evaluation: Machine Learning

- Xeon (Gold 6126) 1 socket vs 1x VE10B, with sparse data (w/o I/O)
 - LR uses CTR data provided by Criteo (1/4 of the original, 6GB)
 - K-means and SVD used Wikipedia doc-term matrix (10GB)
 - Spark version: 2.2.1

Performance Evaluation: Machine Learning

- Xeon (Gold 6226) 1 socket vs 1 VE10BE with sparse data (w/o I/O)
 - LR uses CTR data provided by Criteo (1/4 of the original, 6GB)
 Spark version 2.2.1
 - K-means and SVD used Wikipedia doc-term matrix (10GB) Spark version 3.0.0

Performance Evaluation: Machine Learning

- Xeon (Gold 6226) 2 socket vs 1 VE10BE with sparse data (w/o I/O)
 - LR uses CTR data provided by Criteo (1/4 of the original, 6GB)
 Spark version 2.2.1
 - K-means and SVD used Wikipedia doc-term matrix (10GB) Spark version 3.0.0

Performance Evaluation: DataFrame

XEON Gold 6226, Aurora A311-8 with VE10BE

Evaluated with TPC-H SF-20

- Q1: group by/aggregate
- Q3: filter, join, group by/aggregate

- Q5: filter, join, group by/aggregate (larger join)
- Q6: filter, group by/aggregate

https://github.com/frovedis/frovedis

- Top README.md explains how to install
- Check out Releases

Start with Tutorials for Python/Spark

https://github.com/frovedis/frovedis/blob/master/doc/tutorial_python/tutorial_python.pdf https://github.com/frovedis/frovedis/blob/master/doc/tutorial_spark/tutorial_spark.pdf

Continue with Manuals of Python/Spark API

https://github.com/frovedis/frovedis/blob/master/doc/manual/manual_python.pdf https://github.com/frovedis/frovedis/blob/master/doc/manual/manual_spark.pdf

Performance benchmark and tips to improve performance

https://github.com/frovedis/benchmark/blob/master/Tips.md

NEC released new vector processor SX-Aurora TSUBASA that can accelerate data analytics and machine learning applications

We have developed data analytics middleware Frovedis for SX-Aurora TSUBASA

We show a 10x to 100x performance improvement on several machine learning and data frame processing

NEC-X has opened VEDAC lab for accessing SX-Aurora TSUBASA AI platform with Frovedis.

Orchestrating a brighter world

