
1 © NEC Corporation 20191

Accelerating Spark MLlib and DataFrame with
Vector Processor “SX-Aurora TSUBASA”

Takeo Hosomi
Takuya Araki, Ph.D.

Data Science Research Laboratories
NEC Corporation

Dr. Erich Focht
Senior Manager R&D
NEC Deutschland GmbH

2 © NEC Corporation 20192

Summary

▌NEC released new vector processor SX-Aurora TSUBASA
Different characteristics than GPGPU:

• Larger memory and higher memory bandwidth
• Compatible with standard programming languages

▌Vector processor evolved from HPC
Optimized for unified Big Data analytics
Especially suitable for statistical ML

▌Packaged with machine learning middleware in C++/MPI
Distributed and vectorized implementation
Adapts Apache Spark APIs
~100x faster than Spark on x86

3 © NEC Corporation 20193

What is a Vector Processor ?

Processes many elements with one instruction,
which is supported by large memory bandwidth
Processes many elements with one instruction,
which is supported by large memory bandwidth

Scalar processor Vector processor

Computes many elements at once
Suitable for simulation, AI, Big Data, etc.

Unit of computation is small
Suitable for web server, etc.

Data

Scalar
computation

Result

Vector
computation

Result

Data

256

256

1.53TB/s 0.12TB/s

4 © NEC Corporation 20194

New Vector Processor System “SX-Aurora TSUBASA”

Downsized super computer:
Can be used as an accelerator for Big Data and AI

（ Supercomputer）

5 © NEC Corporation 20195

On-card Vector Processor (Vector Engine)

 NEC-designed vector processor

 PCIe card implementation

 8-10 cores / processor

 6.14TF performance (single precision)

 1.53TB/s memory bandwidth,

48GB memory

 Standard programing interface

(C/C++/Fortran)

6 © NEC Corporation 20196

Processor Specifications
VE1.0 Specification
vector length 256 words

(16k bits)

cores/CPU 8

frequency 1.6GHz

core performance 307GF(DP)
614GF(SP)

CPU performance 2.45TF(DP)
4.91TF(SP)

cache capacity 16MB shared

Memory bandwidth 1.2TB/s

Memory capacity 48GB

Software controllable cache16MB

core core core

core core core core

 1.2TB/s

 3TB/s

HBM2 memory x 6

 0.4TB/s

307GF
2.45TF

7 © NEC Corporation 20197

GPGPU and Vector Engine Execution Models

Parts of App. are executed on GPGPU Whole App. is executed on VE

x86Memory GPGPU
PCIe

Memory

exec

Result Transmission

Data Transmission

exit

:

AppCUDA FunctionOS

exec

OS
Function

Start Processing

exit End Processing

I/O, etc.

x86Memory VE
PCIe

Memory

AppOS

GPGPU: Offloading Model Vector Engine: Native Model

Advantage of Native Model
 Can reduce the data transfer between

x86 and Vector Engine

8 © NEC Corporation 20198

Usability

Programing Environment
automatic vectorization, automatic parallelization

$ vi sample.c$ ncc sample.c

Execution Environment

$ ve_exec ./a.out execution
x86x86

OS: RedHat Linux, Cent OSFortran: F2003, F2008(partially)C: C11C++: C++14OpenMP: OpenMP4.5MPI: MPI3.1LLVM-VE w/ intrinsics, RV, OMP Tgt, experimental

Vector Cross Compiler

9 © NEC Corporation 20199

Why Vector Engine?

 High memory bandwidth and large memory capacity

 Supports native execution model

 Standard programing model

 Scale to multiple vector processors
 Direct data transfer among multiple vector processors through PCIe

and InfiniBand

Can accelerate memory intensive workloads

10 © NEC Corporation 202010

AI/ML on SX-Aurora TSUBASA

Memory
performance

Computation
performance

ｚ
General
purpose

CPU

General
purpose

CPU

CNN
LSTM

Data Frame

GPUGPU

Statistical
Machine Learning

MLP

• AI/ML that requires memory performance can be well accelerated
• Provide frameworks for easy utilization

Vector
Engine

Vector
Engine

Frovedis

VE support

Frovedis:
Framework of vectorized and distributed data analytics

12 © NEC Corporation 201912

Frovedis: FRamework Of VEctorized and DIStributed data analytics

Frovedis Core

Matrix Library Machine Learning DataFrame

Spark / Python Interface

Open Source! github.com/frovedis

▌C++ framework similar to Spark
Supports Spark/Python interface

▌MPI is used for high performance communication
▌Optimized for SX-Aurora TSUBASA (also works on x86)

13 © NEC Corporation 201913

Frovedis Core

▌Provides Spark core-like functionalities (e.g. map, reduce)
Internally uses MPI to implement distributed processing
Inherently supports multiple cards/servers

▌Users need not be aware of MPI to write distributed processing
code
Write functions in C++
Provide functions to the framework to run them in parallel

▌Example: double each element of distributed variable
int two_times(int i) {return i * 2;}
int main(...) {
 ...
 dvector<int> r = d1.map(two_times);
}

run
“two_times” in

parallel

run
“two_times” in

parallel

distributed variabledistributed variable

14 © NEC Corporation 201914

Complete Sample Program (1/2)

▌Scatter a vector; double each element; then gather

▌Do not have to be aware of MPI (SPMD programming style)
Looks more like a sequential program

#include <frovedis.hpp>
using namespace frovedis;

int two_times(int i) {return i*2;}

int main(int argc, char* argv[]) {
 use_frovedis use(argc, argv);

 std::vector<int> v = {1,2,3,4,5,6,7,8};
 dvector<int> d1 = make_dvector_scatter(v);
 dvector<int> d2 = d1.map(two_times);
 std::vector<int> r = d2.gather();
}

initializationinitialization

scatter to
create dvector

scatter to
create dvector

gather to
std::vector
gather to

std::vector

15 © NEC Corporation 201915

Complete Sample Program (2/2)

▌Works as an MPI program
#include <frovedis.hpp>
using namespace frovedis;

int two_times(int i) {return i*2;}

int main(int argc, char* argv[]) {
 use_frovedis use(argc, argv);

 std::vector<int> v = {1,2,3,4,5,6,7,8};
 dvector<int> d1 = make_dvector_scatter(v);
 dvector<int> d2 = d1.map(two_times);
 std::vector<int> r = d2.gather();
}

MPI_Init is called in the constructor, then branch:
• rank 0: execute the below statements
• rank 1-N: wait for RPC request from rank 0

MPI_Init is called in the constructor, then branch:
• rank 0: execute the below statements
• rank 1-N: wait for RPC request from rank 0

rank 0 sends RPC request to
rank 1-N to do the work
rank 0 sends RPC request to
rank 1-N to do the work

in the destructor of “use”, MPI_Finalize is called and send
RPC request to rank 1-N to stop the program
in the destructor of “use”, MPI_Finalize is called and send
RPC request to rank 1-N to stop the program

16 © NEC Corporation 201916

Matrix Library

▌Implemented using Frovedis core and existing MPI libraries[*]
[*] ScaLAPACK/PBLAS, LAPACK/BLAS, Parallel ARPACK

▌Supports dense and sparse matrix of various formats
Dense: row-major, column-major, block-cyclic
Sparse: CRS, CCS, ELL, JDS, JDS/CRS Hybrid (for better vectorization)

▌Provides basic matrix operations and linear algebra
Dense: matrix multiply, solve, transpose, etc.
Sparse: matrix-vector multiply (SpMV), transpose, etc.

blockcyclic_matrix<double> A = X * Y; // mat mul
gesv(A, b); // solve Ax = b

ExampleExample

17 © NEC Corporation 201917

Machine Learning Library

▌Supported algorithms:
Linear model

• Logistic Regression

• Multinominal Logistic
Regression

• Linear Regression

• Linear SVM

ALS
K-means

Preprocessing
• SVD, PCA

Frequent Pattern Mining
Spectral Clustering
Hierarchical Clustering
Latent Dirichlet Allocation
Deep Learning (MLP, CNN)
Random Forest
Gradient Boosting Decision

Tree

▌We will support more!

Word2vec
Factorization

Machines
Decision Tree
Naïve Bayes
Graph algorithms

• Shortest Path,
PageRank,
Connected Components

Implemented with Frovedis Core and Matrix Library
 Supports both dense and sparse data
 Sparse data support is important in large scale machine learning

18 © NEC Corporation 201918

DataFrame

▌Supports similar interface as Spark DataFrame
Select, Filter, Sort, Join, Group by/Aggregate
(SQL interface is not supported yet)

▌Implemented as distributed column store
Each column is represented as distributed vector
Each operation only scans argument columns:

other columns are created when necessary
(late materialization)

Reduces size of data to access

A B C D

A B C D

rank #0

rank #1

rank #2

19 © NEC Corporation 201919

Spark / Python Interface

▌Writing C++ programs is sometimes tedious, so we created a
wrapper interface to Spark
Call the framework through the same Spark API
Users do not have to be aware of vector hardware

▌Implementation: created a server with the functionalities
Receives RPC request from Spark and executes ML algorithm, etc.
Only pre-built algorithms can be used from Spark

▌Other languages can also be supported by this architecture
Currently Python is supported (scikit-learn API)

20 © NEC Corporation 201920

How it works

▌Rank 0 of the Frovedis server waits for RPC from driver of Spark
▌Data communication is done in parallel

All workers/ranks send/receive data in parallel
Assuming that the data can fit in the memory of the Frovedis server

Spark Frovedis Server

driver

worker 0

worker 1

worker 2

rank 0

rank 1

rank 2

Interactive
operation

RPC
request

Data
communication

21 © NEC Corporation 201921

Programming Interface

▌Provides same interface as the Spark’s MLlib

Original Spark program: logistic regression

…
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
…
val model = LogisticRegressionWithSGD.train(data)
…

…
import com.nec.frovedis.mllib.classification.LogisticRegressionWithSGD
…
FrovedisServer.initialize(...)
val model = LogisticRegressionWithSGD.train(data)
FrovedisServer.shut_down()
…

Change import

Start/Stop
server

Same API
(no change)

22 © NEC Corporation 201922

Python (scikit-learn) Interface

Original Python program: logistic regression

…
from sklearn.linear_model import LogisticRegression
…
clf = LogisticRegression(…).fit(X, y)
…

…
from frovedis.mllib.linear_model import LogisticRegression
…
FrovedisServer.initialize(…)
clf = LogisticRegression(…).fit(X, y)
FrovedisServer.shut_down()
…

Change import

Start/Stop
server

Same API
(no change)

23 © NEC Corporation 201923

YARN Support

▌Resource allocation by YARN is also supported
Implemented in the collaboration with Cloudera (formerly Hortonworks) team

▌Implementation:
YARN is modified to support Vector Engine (VE) as resource (like GPU)
Created a wrapper program of mpirun, which works as YARN client

• Obtain VE from YARN Resource Manager, and run MPI program on the given VE
Used the wrapper as the server invocation command

• Specified in FrovedisServer.initialize(...)

YARN
RM

VE

VE

VE

Spark
mpirun
wrapper

mpirun

24 © NEC Corporation 201924

Performance Evaluation: Machine Learning

▌Xeon (Gold 6126) 1 socket
vs 1x VE10B,
with sparse data (w/o I/O)
LR uses CTR data provided by

Criteo (1/4 of the original, 6GB)
K-means and SVD used Wikipedia

doc-term matrix (10GB)
Spark version: 2.2.1

LR K-means SVD
0

20

40

60

80

100

120

1 1 1
10.6 8.8 5.3

113.2

42.8

56.8

Spark/x86 Frovedis/x86 Frovedis/VE

25 © NEC Corporation 201925

Performance Evaluation: Machine Learning

▌Xeon (Gold 6226) 1 socket
vs 1 VE10BE
with sparse data (w/o I/O)
LR uses CTR data provided by

Criteo (1/4 of the original, 6GB)
Spark version 2.2.1

K-means and SVD used Wikipedia
doc-term matrix (10GB)
Spark version 3.0.0

LR K-means SVD
0

20

40

60

80

100

120

140

160

180

1 1 1
15.6

8.7 9.5

161.7

47.3

91.6

Spark/x86 Frovedis/x86 Frovedis/VE

26 © NEC Corporation 201926

Performance Evaluation: Machine Learning

▌Xeon (Gold 6226) 2 socket
vs 1 VE10BE
with sparse data (w/o I/O)
LR uses CTR data provided by

Criteo (1/4 of the original, 6GB)
Spark version 2.2.1

K-means and SVD used Wikipedia
doc-term matrix (10GB)
Spark version 3.0.0

LR K-means SVD
0

20

40

60

80

100

120

140

160

1 1 1
11.7

5.2
11.7

144.2

30.0

75.6

Spark/x86 Frovedis/x86 Frovedis/VE

27 © NEC Corporation 201927

Performance Evaluation: DataFrame

▌Evaluated with TPC-H SF-20
Q1: group by/aggregate

Q3: filter, join, group by/aggregate

Q01 Q03 Q05 Q06
0

10

20

30

40

50

60

70

80

TPC-H SF20

Spark/Xeon (1 socket/12 cores) Frovedis/Xeon (1 socket/12 cores)

Frovedis/VE (1 VE/8 cores)

Q01 Q03 Q05 Q06
0

10

20

30

40

50

60

70

TPC-H SF20

Spark/Xeon (2 socket/24 cores) Frovedis/Xeon (2 socket/24 cores)

Frovedis/VE (1 VE/8 cores)

Q5: filter, join, group by/aggregate (larger join)

Q6: filter, group by/aggregate

XEON Gold 6226, Aurora A311-8 with VE10BE

28 © NEC Corporation 201928

Pointers and Resources

▌https://github.com/frovedis/frovedis
 Top README.md explains how to install
 Check out Releases

▌Start with Tutorials for Python/Spark
https://github.com/frovedis/frovedis/blob/master/doc/tutorial_python/tutorial_python.pdf
https://github.com/frovedis/frovedis/blob/master/doc/tutorial_spark/tutorial_spark.pdf

▌Continue with Manuals of Python/Spark API
https://github.com/frovedis/frovedis/blob/master/doc/manual/manual_python.pdf
https://github.com/frovedis/frovedis/blob/master/doc/manual/manual_spark.pdf

▌Performance benchmark and tips to improve performance
https://github.com/frovedis/benchmark/blob/master/Tips.md

https://github.com/frovedis/frovedis
https://github.com/frovedis/frovedis/blob/master/doc/tutorial_python/tutorial_python.pdf
https://github.com/frovedis/frovedis/blob/master/doc/tutorial_spark/tutorial_spark.pdf
https://github.com/frovedis/frovedis/blob/master/doc/manual/manual_python.pdf
https://github.com/frovedis/frovedis/blob/master/doc/manual/manual_spark.pdf
https://github.com/frovedis/benchmark/blob/master/Tips.md

29 © NEC Corporation 201929

Conclusion

▌NEC released new vector processor SX-Aurora TSUBASA that can
accelerate data analytics and machine learning applications

▌We have developed data analytics middleware Frovedis for SX-Aurora
TSUBASA

▌We show a 10x to 100x performance improvement on several machine
learning and data frame processing

▌NEC-X has opened VEDAC lab for accessing SX-Aurora TSUBASA
AI platform with Frovedis.

