
3/18/2017 TidalScale Proprietary & Confidential 1

How to Build a Software Defined Server,

and How Best to Use it

Flexible - Fast - Easy

Ike Nassi
Supercomputing Frontiers
March 2017

3/18/2017 TidalScale Proprietary & Confidential 2

Supercomputer

3/18/2017 TidalScale Proprietary & Confidential 3

What if we think about a cluster differently?

• What if all the nodes in a cluster were combined to form a single virtual computer?

• What if that computer semi-automatically optimized itself?

• That is, it exhibited introspection - watching itself, giving itself positive and negative feedback,

and learning how to behave better?

• What if the machine were better than we were about adjusting it’s own behavior through

machine learning?

• And what if it did this at machine speed, rather than human speed?

• Could the computer be smarter than we are about managing its own operation?

• And what if it could get bigger and better without needing new generations of silicon?

• And how would we best make use of it?

• E.g. through programming paradigms

• What adjustment knobs would be useful?

3/18/2017 TidalScale Proprietary & Confidential 4

• It is a collection of tightly-coupled cooperating servers, which together combine to

form a single large computer running a single operating system, networked

together on a standard interconnect.

• The operating system should be standard, and not require any modifications.

• Applications should not require any modifications.

• Questions you might have:
1. Can it be done at all?

2. Isn’t the interconnect going to be a bottleneck?

3. Is there any special hardware required?

4. Is it NUMA?

5. Is it reliable?

6. How do I set one up?

What is a Software Defined Server?

3/18/2017 TidalScale Proprietary & Confidential 5

• Pioneering Software-Defined Servers

• Founded by Dr. Ike Nassi, CTO, in 2012

• Strong, cohesive team focused on revolutionizing the data center

• Software available for license now

• Backed by Bain Capital, HWVP, SAP Sapphire, Samsung, Citrix, InfoSys

TidalScale Snapshot
5

3/18/2017 TidalScale Proprietary & Confidential 6

Dr. Ike Nassi

Founder / CTO

Gary Smerdon

President & CEO

Dr. David Reed

Chief Scientist

Board / Advisors: Enrique Salem, Lars Leckie, Fred Weber, Carl Waldspurger,

Gordon Bell

An Experienced Team

Michael

Berman

VP Engineering

6

3/18/2017 TidalScale Proprietary & Confidential 7

Scale Up vs. Scale Out

Do I have a choice?

What size of a system is

needed in 3 years?

Data Explosion

Can my dataset fit in

memory?

Analytics D
a

ta
 M

in
in

g

Real-Time Analysis

Machine Learning

Graph Analysis

Fraud Detection

Digital Marketing P
re

d
ic

ti
v
e

 A
n

a
ly

ti
c
s

High-Performance Demands

Memory is 1000 times

Faster than NVMe Flash!

• The Challenge

The Problem
7

3/18/2017 TidalScale Proprietary & Confidential 8

Resolving the Conundrum of Scale Up or Scale
Out

Scale Up Scale Out

Software

Simplicity

Hardware Cost

✔

✗

✗

✔

✔

✔

3/18/2017 TidalScale Proprietary & Confidential 9

T
id

a
lS

c
a

le

NVMe Flash 150 μs 6 days

Flash Array 1 ms 6 weeks

TCP packet retransmit 2 s 211 years

Operation Processing Latency In Human Terms

1 CPU Cycle 0.3 ns 1 sec

L1 – L3 Cache 1 to 13 ns 3 – 40 sec

DRAM 50 to 150 ns 3 to 9 minutes

Memory over Ethernet 3 μs 3 hours

CPU Context Transfer 6 μs 6 hours

The Memory Hierarchy in Human Terms

3/18/2017 TidalScale Proprietary & Confidential 10

Technical Details

3/18/2017 TidalScale Proprietary & Confidential 11

Traditional Virtualization
V

ir
tu

al

P
h

ys
ic

al

Multiple virtual machines share a
single physical server

Virtual

Machine

Virtual

Machine

Virtual

Machine

Application

Operating System

100%, bit-for-bit
 unmodified

Application

Operating System

Application

Operating System

3/18/2017 TidalScale Proprietary & Confidential 12

Single virtual machine spans multiple physical servers

TidalScale Software-Defined Servers

Application

Operating System

…
 HyperKernel HyperKernel HyperKernel

TidalScale

Virtual

Machine

100%, bit-for-bit
 unmodified

3/18/2017 TidalScale Proprietary & Confidential 13

 HyperKernel
…

 HyperKernel HyperKernel HyperKernel HyperKernel

Application

Operating System

TidalScale Software-Defined Server

Flexible – Scales Up or Down Quickly

Seamless Scalability

3/18/2017 TidalScale Proprietary & Confidential 14

 HyperKernel
…

 HyperKernel HyperKernel HyperKernel HyperKernel

Uses patented machine learning to transparently align resources

Application

Operating System

TidalScale Software-Defined Server

Machine Learning-Driven Self Optimization

3/18/2017 TidalScale Proprietary & Confidential 15

• Virtualize CPU, memory, I/O, and interrupts

• Mobilize all of these resources

• Decentralize all control – i.e. no shared Hyperkernel state, no central scheduler

• Be reliable

• Provide distributed, strongly coherent shared memory

• Preserve x86 execution order

• Boot unmodified guest OS and run unmodified software

• Scale linearly in cost, and dynamically over time

• Scale well as you add more nodes: memory bandwidth, PCI, etc.

• Perform well

What a TidalScale HyperKernel Must Do

This enables customers to size the computer to their

problem, rather than the other way around!

3/18/2017 TidalScale Proprietary & Confidential 16

Applications

Operating Systems

Virtual Machine

If it runs, it runs on a TidalScale Software-Defined Server

TidalScale Software-Defined Server

 HyperKernel
…

 HyperKernel HyperKernel HyperKernel HyperKernel

100% Compatible
C

o
n

ta
in

er
s

kx

3/18/2017 TidalScale Proprietary & Confidential 17

• 10 GBe switch or switch fabric (we use standard 10GE cards)

• High performance switch

• Private to HyperKernel, invisible to the OS
• like a memory bus or I/O bus

• Low-latency, reliable, “zero-copy” Ethernet protocol

• 2 ports per node

TidalScale Uses Ethernet as Resource
Interconnect

3/18/2017 TidalScale Proprietary & Confidential 18

• Nearly 50 years ago we figured out how

to virtualize memory using the locality

principle (i.e. working sets)*

• Today, locality is applied ubiquitously

across our computing infrastructure

• TidalScale applies locality to all compute

resource types automatically &

dynamically across physical machines

• We think in terms of memory hierarchies

• Think of DRAM as an L-4 cache of the

VM

Why It Works - Locality

* P.J. Denning

3/18/2017 TidalScale Proprietary & Confidential 19

• Resource Migration

• Memory, Processor, I/O resources,
and interrupts are moved across a
resource interconnect to build and
exploit locality.

• Remote Operation

• Action transparently performed on
remote node via resource
interconnect.

• Replication

• Selected resources are replicated to
multiple nodes.

• Emulation

• Native hardware operations can be
emulated by the HyperKernel.

HyperKernel ML Choices

Application

Operating System

…

Virtual Machine

VMexit

Fault

VMrun

Request Handler

Remote Handler

VMrun

FastPath

Machine Learning

Migrate

Request

Remote

3/18/2017 TidalScale Proprietary & Confidential 20

Multiple containers on a software-defined server

means:

• Better bin packing

• High speed loopback networking

• Shared file system buffer cache

• Shared storage accruing all the benefits of a

distributed file system but with the simplicity of a

local filesystem.

Container

1

C

k
...

Server Server Server

HyperKernel

OS Kernel

HyperKernel HyperKernel

Software-Defined Server

C

2

Up to a complete rack

C

3

Examples of IT Value: Containers

3/18/2017 TidalScale Proprietary & Confidential 21

Price and Performance

3/18/2017 TidalScale Proprietary & Confidential 22

Larger & Larger

Servers

Terabytes of RAM & many CPU Cores

T
o

ta
l
S

y
s
te

m
 C

o
s
t

“Sweet Spot”

Servers

Price/Performance at Scale

3/18/2017 TidalScale Proprietary & Confidential 23

DRAM . . . and many cores

S
y
s
te

m
 C

o
s
t

$300K

$100K

$200K

2TB 4TB 6TB 8TB 10TB 12TB 14TB

High-End

Quad Socket
(2015 System)

High-End

Quad Socket
(2016 System)

TidalScale
(2014 System)

TidalScale

TidalScale

TidalScale

TidalScale

Financial Analytic Price/Performance at Scale

3/18/2017 TidalScale Proprietary & Confidential 24

Financial Analytic Test

Lenovo
Quad Broadwell 6TB DRAM 96

Cores - 2016 System
$270K

Lenovo
Quad Haswell

1 TB DRAM, 9 SSDs
72 Cores

High Perf. SSDs
2015 System

$210K

TidalScale
5 Nodes, Dual Haswell
3.8TB DRAM, 60 Cores

2014 System, $60K

3/18/2017 TidalScale Proprietary & Confidential 25

Retail Analytics on TidalScale

Performance Comparisons (TPC-H “Powertest” in Minutes)

Workload Size in GB

M
in

u
te

s
 t

o
 P

ro
c
e
s
s

100

0

10

20

30

40

50

70

100
Amazon EC2

0 200 300 400 500 600 700 800 900 1,000

60

80

90

69.1

TEST FAILS
TidalScale Software-Defined Server

22.0

33.7
• In-memory performance

• 3x Faster at 550GB

• Infinitely Faster at 800GB

3/18/2017 TidalScale Proprietary & Confidential 26

• No sharding
• No code changes
• In-memory performance across 5

nodes
• 240x to 550x faster

Benchmark: Open Source R on TidalScale
https://blog.tidalscale.com/300x-performance-gains-without-changing-a-line-of-code

• Version: Revolution R Open 8.0.3
with pryr, dplyr, mgcv, rpart, randomForest,

FNN, Matrix, doparallel & foreach

• Data: CMS Public Use Dataset

• In-memory footprints: 32GB-680GB

• Operations timed:

• Load

• Join

• GAM linear regression

• GLM linear regression

• Decision Tree

• Random Forest (fixed seed)

• K Nearest Neighbors

https://github.com/TidalScale/R_benchmark_test

3/18/2017 TidalScale Proprietary & Confidential 27

Applications and

Guidelines

3/18/2017 TidalScale Proprietary & Confidential 28

Application Use Cases

3/18/2017 TidalScale Proprietary & Confidential 29

Bioinformatics

Bioinformatics TidalScale Use Cases

Value • Sequence larger organisms, identify organisms faster

• Speed medical diagnosis and population-level genomic analysis for epidemiology

Applications • Galaxy, NGS algorithms (SOAPdenovo vs. SPAdes)

• Increase accuracy rates

• Ease processing of large genomic data sets

• Perform all analysis in-memory without

intermediate storage steps

• Speed comparative analysis across

populations

• Example: Analyze billions of genomic base

pairs, differentially analyze, correlate

differences with successful cancer treatment

regimens, identify possible treatments

3/18/2017 TidalScale Proprietary & Confidential 30

• In-memory computing for SQL, NOSQL, Graph DBs, Hadoop,
Spark,…

• Scale out R, SciPy, AnyLogic, without rearchitecture or API changes
normally required for distributed computing

• Seamlessly manage velocity and volume without operational
changes, i.e., scale Docker from 2 GB to 2 TB immediately

•

HyperKernel Application Acceleration

3/18/2017 TidalScale Proprietary & Confidential 31

• Strictly speaking, manual sharding becomes unnecessary.

• Low-latency messages via Linux IPC (no TCP/IP).

• Work distribution via threads, instead of distributed computing.

• Build relationship networks in-memory, instead of across network,
e.g., higher performing graph analytics.

• One programming model for the solution.

HyperKernel In-Memory Computing Benefits

3/18/2017 TidalScale Proprietary & Confidential 32

• TidalScale guests are an SSI that presents a large uniform memory
architecture. Developers do not need to be concerned with data
sharding or processor locality (usually).

Developers should be concerned with:

• In-memory computing and avoiding the memory cliff

• Algorithmic inherent non-locality

• Trading space for time

• False sharing

How Applications can Leverage TidalScale

3/18/2017 TidalScale Proprietary & Confidential 33

• TidalScale exposes multiple TB of large distributed strongly coherent
shared memory with uniform memory access.

(Although we treat both as important, feedback from users suggests that
memory is currently more important than cores.)

• Developers should:

• Eliminate unnecessary I/O and convert storage objects into memory
objects.

• Stream data directly to memory.

• Divide subtasks using Posix threads, OpenMP, or similar techniques.

• Where possible, use pointers rather than move memory.

• Avoid space-conserving algorithms that may be harmful to performance
– they are unnecessary on TidalScale.

Leveraging TidalScale: In-Memory Computing

3/18/2017 TidalScale Proprietary & Confidential 34

• TidalScale migrates pages for updates and replicates read-
only/read-mostly pages.

• Developers should seek to avoid mixing local data of multiple
thread’s on the same page.

• Developers should allocate thread-local objects, use page-aligned
memory, and allocate disjoint objects into unique pages.

Leveraging TidalScale: Avoid False Sharing

3/18/2017 TidalScale Proprietary & Confidential 35

• All trading data is historical

• 6,000 securities (e.g. AAPL, MSFT, INTC,

etc.), 2 tables/security, 12,000 rows/table

(including timestamp), 1,500 columns/table

(~17TB)

• Be prepared to increase the dimensions

• For speed, keep it all in memory

• Problem:
• Ingest securities data
• Sort by timestamp
• Respond to various queries

Example Financial Tech application
(based on a paper to appear in IEEE Computer)

• Solution:

• Create one thread per security

• Each thread ingests it’s own historical trading

date in parallel

• Create an array of several million pointers to

rows

• Sort pointers to rows by timestamp

• No need to move any data – every core has

direct addressability to every row

Blog, white paper, source code:

https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint

https://www.tidalscale.com/hubfs/Marcom/White%20Papers/simple-shmem-current.c

https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://blog.tidalscale.com/application-programming-when-memory-is-no-longer-a-constraint
https://www.tidalscale.com/hubfs/Marcom/White Papers/simple-shmem-current.c
https://www.tidalscale.com/hubfs/Marcom/White Papers/simple-shmem-current.c
https://www.tidalscale.com/hubfs/Marcom/White Papers/simple-shmem-current.c
https://www.tidalscale.com/hubfs/Marcom/White Papers/simple-shmem-current.c
https://www.tidalscale.com/hubfs/Marcom/White Papers/simple-shmem-current.c
https://www.tidalscale.com/hubfs/Marcom/White Papers/simple-shmem-current.c

3/18/2017 TidalScale Proprietary & Confidential 36

Data Center Management

3/18/2017 TidalScale Proprietary & Confidential 37

Software-Defined Servers

• Scale to match the size of data

• Simplify & speed data discovery

• Improve model accuracy

Tomorrow Server’s Today: A Game Changer

“Software-defined Servers make it easy to run

memory-intensive applications like data mining,

machine learning and simulation.”

 Marc Jones, Director &
 Distinguished Engineer, IBM

3/18/2017 TidalScale Proprietary & Confidential 37

3/18/2017 TidalScale Proprietary & Confidential 38

Create a Server of Any Size in Minutes

Step 2

Drag & Drop to create &
manage TidalPods

Step 3

Monitor system
performance & health

Step 1

Identify & import servers into a
TidalPool

Deliver on Flexible & Easy

3/18/2017 TidalScale Proprietary & Confidential 39

Wave Runner – GUI Prototype

3/18/2017 TidalScale Proprietary & Confidential 40

TidalScale on Demand

• Flexible: available in units of

512GB up to a full rack or

more (15TB-23TB per rack)

• 1TB disk storage per unit

• 100MB Internet link

• Secure Access

• Firewall protection
• CentOS, Red Hat, Ubuntu,…

• Flexible lease options

• Persistent storage available

40

Hosting Partners

3/18/2017 TidalScale Proprietary & Confidential 41

TidalScale – Development Systems

Nodes	 Cores	 RAM	 SSD	Storage	 Rack	Units	
3	(current	config)	 48	cores	 1.5	TB	 7.2TB	 4	
7	nodes	 112	cores	 3.6	TB	 10.4TB	 4	

15	nodes	 240	cores	 7.7	TB	 16.8TB	 8	
23	nodes	 368	cores	 11.8	TB	 23.2TB	 12	

	

	
	

Easy to Purchase

Easy to Expand

“3+1” Starter

Kit

“7+1” Starter

Kit

Cores 48 Xeon E5v4

 3.2Ghz

112 Xeon E5v4

3.2Ghz

Memory 1.5TB 3.6TB

Storage 7.2TB 10.4TB

SuperMicro TwinMax Server

3/18/2017 TidalScale Proprietary & Confidential 42

Partnered with Industry Leaders

3/18/2017 TidalScale Proprietary & Confidential 43

• Why it’s important to rethink some fundamental assumptions

• How it works

• How it performs

• Application coverage and some guidelines

• How to manage the landscape

• Deployment options

Summary

3/18/2017 TidalScale Proprietary & Confidential 44

Fast

“This is the way all servers will be built in the future.”
Gordon Bell, industry legend and 1st outside investor in TidalScale

Flexible

Scale to any size

Easy

Use commodity servers

Expand with user

requirements

In-memory performance

Optimize transparently

with Machine Learning

Dispatch dozens to

hundreds of CPU cores

Run applications and

OS unmodified

No partitioning datasets

Everything just works

Software-Defined Servers are a Game Changer
44

3/18/2017 TidalScale Proprietary & Confidential 45

Ike Nassi
ike.nassi@tidalscale.com

Thank You

