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Post Moore Technology Curve 
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Great opportunities exist for innovation through the end of 
Moore’s Law 
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Now – 2025 
Moore’s Law continues through 

~5nm. Beyond which diminishing 

returns are expected.  Dark Silicon 

will begin to encourage 

specialization  

End of Moore’s Law 
End of Moore’s Law requires a 

different set of optimizations to 

continue performance scaling.  

Opportunities for additional 

specialization, reconfigurable 

computing, hardware / software co-

design, etc. 

Post Moore Scaling 
New materials possibly introduced to 

allow continued process and 

performance scaling.   

Throughout… 
Continued increases in parallelism and 

heterogeneity will require advanced 

runtimes, programming environments and 

compiler optimizations in order to take full 

advantage of these new architectures 



Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton 
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Paths Forward in Post-Moore 
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How do we best encourage 

architecture diversity? 
Open ecosystems allow optimization at every 

level  



Open Source Hardware 
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Driving the next wave of innovation 
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In all likelihood, Weddington concedes, the 

resulting technology “will never be as good as what 

is commercially available.” But perhaps it could 

be made good enough “to bring the power and 

ability to design your own IC, or microprocessor, 

to smaller and smaller groups of people and drive 

down the enormous capital requirements of an 

entrenched, dinosaur industry.”

Similarly, Michael Cooney of Network World15 

describes the state of open-source hardware today 

as roughly where open-source software was during 

the mid-1990s – waiting for commercial suppliers 

to provide higher levels of support. “What made 

open-source software acceptable for many 

businesses was the arrival of support for it, such as 

Red Hat,” he says, adding, “Something similar may 

take place with the hardware.”

•  Rapid growth in the adoption and number of open source software projects 

•  More than 95% of web servers run Linux variants, approximately 85%  

 of  smartphones run Android variants

•  Will open source hardware ignite the semiconductor industry?  

 Is RISC-V the hardware industry’s Linux?

The Rise of Open Source Software:  Will Hardware Follow Suit?

The Economics of Open-Source Innovation

GSA 2016 



Why Open Source Hardware? 

‣ Reducing the cost of development  

• By creating and sharing open hardware (RISCV, OpenSoC) 

‣ Closed source IP is a major drag on innovation in all technology 
spaces 

• Don’t need to be a big company to play – lower barrier of entry  

• Open nature enables customization at all levels of the design – not just at the 
periphery  

• Final product can still be closed 

‣ Lower Cost / Complexity for Development 

• Share hardware AND software stack  

- Compilers, debug, Linux ports 

• Focus NRE and license on new/innovative IP blocks 

• Stop squeezing license costs out of items that students can implement in a 
summer  (license *hard* stuff instead) 

9 



Chisel: A DSL for Hardware Design  

‣ Increase the productivity of hardware designers 

• Chisel raises the abstraction level of hardware design 

• Introduces OOP techniques to hardware development 

• Encourages code reuse 

‣ Hardware Generators are a more efficient technique 
for generating designs 

• Reduce waste in design 

• Reduce design time 

• Reduce risk 

• Reduce cost 
10 

A productive, flexible language for hardware design and 
simulation  



Chisel Overview 
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‣ Not “Scala to Gates” 

‣ Describe hardware 

functionality 

‣ All the abstractions 

available of a 

modern language 

• Now applied to 

hardware design 

How does Chisel work? 

Algebraic Graph Construction 16

Mux( x > y, x, y) > Mux

x

y

Algebraic Graph Construction 16

Mux( x > y, x, y) > Mux

x

y



Chisel: A DSL for Hardware Design 
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Hardware Generation Infrastructure with Integrated 
Simulation 

Chisel Design 

Description 

SW 

Model 
Verilog 

C++ 

Simulator 

C++ Compiler 

Chisel Compiler 

FPGA 

Emulation 

FPGA Tools 

ASIC Tools 
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Chisel Design 
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Chisel: A DSL for Hardware Design 
Hardware Generation Infrastructure with Integrated 
Simulation 



RISC V Based Processors 
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‣ Multiple flavors 

• Out-of-order (BOOM) 

• In-Order (Rocket) 

• IoT (Z-Scale) 

‣ Powerful features 

• 32, 64, 128-bit addressing 

• Double precision floating point 

• Vector accelerators 

‣ Complete SW stack available 

‣ Highly configurable 

• Only add the features you want! 

Open source, chisel based processors based on a new 
ISA 



“Open Source” doesn’t mean  

“Low Performance” 

Category ARM Cortex A5 RISC-V Rocket 

ISA 32-bit ARM v7 64-bit RISC-V v2 

Architecture Single-Issue In-Order 8-
stage 

Single-Issue In-Order 5-stage 

Performance 1.57 DMIPS/MHz 1.72 DMIPS/MHz 

Process TSMC 40GPLUS TSMC 40GPLUS 

Area w/o Caches 0.27 mm2 0.14 mm2 

Area with 16K 
Caches 

0.53 mm2 0.39 mm2 

Area Efficiency 2.96 DMIPS/MHz/mm2 4.41 DMIPS/MHz/mm2 

Frequency >1GHz >1GHz 

Dynamic Power <0.080 mW/MHz 0.034 mW/MHz 

Rocket Area Numbers 
Assuming 85% Utilization, 

the same number ARM 
used to report area. 

Plots are not to scale. 
26 
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Sometimes you get more than paid for… 

Y. Lee UCB @ Hotchips 2016 
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“Open Source” doesn’t mean  

“Low Performance” 
Sometimes you get more than paid for… 

Y. Lee UCB @ Hotchips 2016 



Building a HPC System out of RISC-V? 
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‣ RISC-V Gaining 
significant momentum 

• Large community of SW 
and HW developers 

• Official ISA of India 

‣ Many RISC-V based 
implementations in 
the wild 

• Most not customer 
facing… yet  

‣ Long term investment 

Is it crazier than using ARM? 



OpenSoC Fabric 
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‣ Greater number of cores per chip driving 
the evolution of sophisticated on-chip 
networks 

• Needed new tools and techniques to evaluate 
tradeoffs  

‣ Chisel-based  

• Allows high level of parameterization 

- Dimensions, topology, VCs, etc. all configurable 

• Fast, functional SW model for integration with 
other simulators 

• Verilog model for FPGA and ASIC flows 

‣  Multiple Network Interfaces 

• Integrate with wide variety of existing 
processors 

- Tensillica, RISC-V, ARM, etc. 
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SC15 Demo:  96 Core SoC Design for HPC 
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‣ Z-Scale processors 

connected in a 

Concentrated Mesh 

‣ 4 Z-scale processors 

‣ 2x2 Concentrated mesh 

with 2 virtual channels 

‣ Micron HMC Memory 

http://www.codexhpc.org/?p=367 
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96 Core System: Results 
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Comparing conventional cache coherence protocol 
To direct hardware support for global address space for halo exch. 
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Local Exchange

Remote Exchane

Cycles 

Inter-Thread Latency 

RISCV-SoC

x86



If you thought 96 cores was cool… 
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‣ 1680 32-bit RISC-V 

Cores 

• 30 rows x 7 Col 

‣ 26MB SRAM 

‣ 300bit NoC 

GRVI Phalanx Accelerator (Jan Gray) 



24 



Accelerating the Design Process 
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Creating a complete suite of tools for rapid processor and 
compiler generation 

OpenSoC OpenSoC Fabric 
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Accelerating the Design Process 
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Creating a complete suite of tools for rapid processor and 
compiler generation 

OpenSoC Fabric 

OpenSoC OpenSoC  
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Accelerating the Design Process 
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Creating a complete suite of tools for rapid processor and 
compiler generation 

OpenSoC Fabric 

OpenSoC Compiler 
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Accelerating the Design Process 
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Creating a complete suite of tools for rapid processor and 
compiler generation 

OpenSoC Fabric 

OpenSoC Compiler 

OpenSoC Cores 

OpenSoC OpenSoC 
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Accelerating the Design Process 
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Creating a complete suite of tools for rapid processor and 
compiler generation 

OpenSoC Fabric 

OpenSoC Compiler 

OpenSoC Cores 

OpenSoC System Architect 
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Instruction Set 

Extensions Black Box 

Modules

RISC-V ISA & Extensions

Chisel Modules

LLVM Compiler Backend

Full-Chip 

Verilog

Chisel SoC

C++ Cycle-

Based 

Simulator

Module

TestBenches

VLSI Tools

FPGA Tools

OpenSoC 

System Architect 
A complete hardware and 

software development toolkit 
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Specialization and FPGAs Look 

Compelling… 
What do we need to make these concepts 

mainstream? 



Programmability  
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Remember 2004? 

Buck, Owens, Riffel, Lefhon , et al.  



New FPGAs are very capable 
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‣ FPGA +Stacked 

Memory SIP 

• 1GHz Fabric 

• Quad core A53 

• >6 TFlops Single 

Precision 

• 16GB HBM on 

package, 1TB/s BW 

• Tb/s IO 

Riding Moore’s Law to the end… 



Programmability  

‣ Parallels with early days of 

GPGPU computing 

• VERY capable hardware  

‣ New languages raising 

abstraction levels 

• OpenCL 

• OpenACC 

‣ But the tools are still terrible 

34 

FPGA ecosystem promoting development of new tools 
and abstractions to accelerate development 



Programmability  

‣ Previous model: 

• Translate your algorithm from Fortran/C/etc. to a 

hardware description 

• Highest performance gain, but most significant 

development effort 

‣ New model: 

• Instantiate an array of specialized “soft” cores that can be 

targeted much like a GPU 

• Greater flexibility, simpler hardware development  

• Enables acceleration of applications not typically 

associated with FPGA computing 
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No need to translate your algorithm directly to hardware 



Creating an architecture per motif 
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Catapult 

‣ Microsoft Catapult (ISCA 2014) 

• Bing search acceleration 

• Lower Cost and Power 

• Programmable 

• Composed of customized soft cores 

37 

Real world deployment of FPGA accelerators  



A Potential Exascale Node 
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A notional representation using specialization  
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A Potential Exascale Node 
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A notional representation using specialization  
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Advanced Manufacturing  

‣ Can combine processing and memory in single 

package with efficient interconnect  

40 

3D Stacking 

Novati, EE Times 
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Looking out to the edge…  
Applying these tools and techniques to other 

scientific / computational areas 



On-detector processing 

‣ The Problem: 

• Future detectors threaten to overwhelm 
data transfer and computing capabilities 
w/ data rates exceeding 1 Tb/s 

• Data processing experiment driven 

‣ Proposed solution: 

• Process the data before it leaves the 
sensor 

• Application-tailored, programmable 
processing allows data reduction to 
occur on-sensor 

• Programmability allows data reduction 
techniques to be tailored to the 
experiment – even after the sensor is 
built! 
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Putting our hardware design tool suite to work to augment 
existing HPC resources 
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What’s Next? 

‣ Need to continue to deliver increased performance scaling 

‣ FPGAs emerging as the next computational element 

• Moving away from monolithic implementations to specialized soft cores 

‣ Can we get some better tools? 

• HW design getting better, but not enough 

• Tune Chisel compiler for FPGAs 

‣ Already being deployed at scale 

• Catapult  

• AWS 

- Bitfile marketplace 

None of this matters without advanced software – programming 
models, runtimes, etc  
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Thank you! 
ddonofrio@lbl.gov 



‣ Backup 
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Future Elect ron Scat ter ing Detector

100,000 fps pixel detector

576 x 576 x 10 #m

Segmented silicon HAADF

Fabricate detectors Q4CY2016

Dedicated (donated) 
400 Gbs link to NERSC

Link testing underway

Stream events to processors on Cori

Future goal: firmware processing 
(reduce data rate)
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