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Post Exsascale Landscape
MIND THE GAP!

Post Moore 
Scaling
New materials and 
devices introduced 
to enable 
continued scaling 
of digital 
electronics 
performance and 
efficiency.  
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Moore’s	Law	con9nues	through	
~5nm	--	beyond	which	
diminishing	returns	are	
expected.		

Moore’s Law
Lithography Scaling
2x increased density

2x lower power
Every 2 years!



Is it the end?

“I predict Moore’s Law will never end.  
That way I will only be wrong once!”

Alan Kay: Communications of the ACM 1989



Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith
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SO WHAT IF MOORE’S LAW ENDS ?
WHY SHOULD I CARE?

Nothing lasts forever…
Especially an exponential trend!
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consumer	electronics	
+	data	centers

IT	challenge	for	future	electricity	supply

Do	Nothing
Energy	~	100pj/op
~20%	primary	energy

New	Moore	scaling
In	20	yrs
Energy	=	20pj/op
IT=30-40%	growth

New	Moore	
scaling	in	10	yrs
Energy	=	20fj/op
IT=hold	to	8%

www.alliancetrustinvestments.com/sri-hub/posts/Energy-efficient-data-centres
www.iea.org/publications/freepublications/publication/gigawatts2009.pdf

Global	Semiconductor	market	size	~	$5Trillion	by	2030

Average	US	Household	Computing	Power	
Consumption	:	2-3kWh	/	day



Innovation is the Answer!

Moore’s Law is an economic theory.  
There are ways to continue scaling of 

digital technology after the end of 
classical lithographic scaling

(e.g. end of Dennard Scaling in ~2004
No more exponential clock frequency scaling
Move to exponentially increasing parallelism)



Post-Lithographic Scaling Options
There are other ways to continue Moore’s Scaling!

CMOS Reconfigurable
Computing

New	Architectures	 and	Packaging
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Digital

Quantum
Neuro-

Inspired

Beyond Moore Computing Taxonomy

Cognitive Computing,
Pattern Recognition

Combinatorial/NP,
Annealing/Optimization,
Simulated Atoms

Symbolic Computation,
Arithmetic,
Logic



Digital

Quantum
Neuro-

Inspired

Beyond Moore Computing Taxonomy

Cognitive Computing,
Pattern Recognition

Combinatorial/NP,
Annealing/Optimization,
Simulated Atoms

Symbolic Computation,
Arithmetic,
Logic

IDA/iARPA Study 2014
• Invest in extending reach of computing to new areas where 

digital is not efficient by studying Quantum, Neuromorphic
• But don’t forget that you need digital (it offers a kind of 

computation that is not well replicated alternatives)
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Computing beyond 
Moore’s Law
John M. Shalf, Lawrence Berkeley National Laboratory

Robert Leland, Sandia National Laboratories

Photolithography systems are on pace to reach atomic scale 
by the mid-2020s, necessitating alternatives to continue 
realizing faster, more predictable, and cheaper computing 
performance. If the end of Moore’s law is real, a research 
agenda is needed to assess the viability of novel semiconductor 
technologies and navigate the ensuing challenges.

In 1965, Gordon Moore famously observed that the 
number of components on an integrated circuit (IC) 
had doubled every year on average since the intro-
duction of this technology in 1959.1 He predicted that 

this trend, driven by economic considerations of cost and 
yield, would continue for at least a decade, although later 
the integration pace was moderated to doubling approx-
imately every 18 months. He also noted that “shrinking 
the dimensions on an integrated structure makes it pos-
sible to operate the structure at higher speed for the same 
power per unit area”—an innovation that Robert Dennard 
of IBM formalized nearly a decade later as Dennard scal-
ing, the ability to reduce device operating voltages and 
scale clock frequencies exponentially each generation.2

This mutually reinforcing scaling of feature size, fre-
quency, and power meant that chip functionality would 
improve exponentially with time at a roughly constant 

cost per generation, and Moore predicted this improve-
ment, in turn, would lead to a cornucopia of societal 
benefits that would flow from semiconductor microelec-
tronics technology. The serendipitous scaling effects 
Moore predicted did indeed persist, lasting 40 years lon-
ger than he predicted. However, Dennard scaling came 
to an end in 2004, which led to a power-efficiency crisis 
for CMOS logic and which poses an even more funda-
mental challenge for traditional technology scaling in 
the mid-2020s.

Within that decade, the magical growth process 
Moore described will come to an end as 2D lithography 
capability approaches the atomic realm. The end of con-
ventional scaling will impact all computing technolo-
gies that depend on improvements in cost, energy effi-
ciency, and storage capacity—from large-scale systems 
to the smallest consumer electronic devices. 

See Our Article in 2016
December Issue of IEEE Computer!
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REBOOTING COMPUTING

ARCHITECTURE AND 
SOFTWARE ADVANCES
Architectural schemes to extend dig-
ital computing aim to better manage 
energy, decrease power consumption, 
lower overall chip cost, and improve 
error detection and response. 

Energy management 
Current energy-management tech-
nologies are ubiquitous and typically 
coarse grained. Dynamic voltage and 
frequency scaling (DVFS) and thermal 
throttling lower both clock frequen-
cies and voltages when computing 
demands do not require peak per-
formance. Coarse-grained DVFS can 
save significant power in current con-
sumer electronics devices, which are 
mostly idle. However, it only margin-
ally benefits devices that operate near 
100 percent utilization. Finer-grained 

power management might provide 
additional potential to recover energy, 
enabling faster transitions between 
power states by having the software 
direct state changes.

Circuit design 
Studies have demonstrated approaches 
that enable wires to operate at a lower 
voltage for long-haul connections and 
then reamplify efficiently at the end-
points, although with some loss from 
reamplification. A recent NVIDIA 
paper estimated an opportunity for 
two to three times improvement using 
such advanced circuit design tech-
niques with current technologies.8

A more aggressive path to perfor-
mance enhancement is clockless (or 
domino logic) design. Clock distribu-
tion consumes a large fraction of sys-
tem power, and constricts a circuit 

to the operation speed of its slowest 
component. Practical and effective 
clockless designs have proven elu-
sive, but recent examples show that 
this approach could be a viable way 
to lower dynamic power consump-
tion for both neuromorphic and digi-
tal applications.9

System-on-chip (SoC) 
specialization
The core precept of SoC technology is 
that chip cost is dominated by com-
ponent design and verification costs. 
Therefore, tailoring chips to include 
only the circuit components of value to 
the application is more economically 
efficient than designing one chip that 
serves a broad application range—the 
current commodity design practice. 
This tailoring strategy is common 
practice for cell-phone chips, such as 

TABLE 1. Summary of techology options for extending digital electronics.

Improvement Class Technology Timescale Complexity Risk Opportunity

Architecture and 
software advances

Advanced energy management Near-Term Medium Low Low

Advanced circuit design Near-Term High Low Medium

System-on-chip specialization Near-Term Low Low Medium

Logic specialization/dark silicon Mid-Term High High High

Near threshold voltage (NTV) operation Near-Term Medium High High

3D integration and 
packaging

Chip stacking in 3D using thru-silicon vias (TSVs) Near-Term Medium Low Medium

Metal layers Mid-Term Medium Medium Medium

Active layers (epitaxial or other) Mid-Term High Medium High

Resistance reduction Superconductors Far-Term High Medium High

Crystaline metals Far-Term Unknown Low Medium

Millivolt switches (a 
better transistor)

Tunnel field-effect transistors (TFETs) Mid-Term Medium Medium High

Heterogeneous semiconductors/strained silicon Mid-Term Medium Medium Medium

Carbon nanotubes and graphene Far-Term High High High

Piezo-electric transistors (PFETs) Far-Term High High High

Beyond transistors 
(new logic 
paradigms)

Spintronics Far-Term Medium High High

Topological insulators Far-Term Medium High High

Nanophotonics Near/Far-Term Medium Medium High

Biological and chemical computing Far-Term High High High



Accelerated	development	&	optimization
For	new	Logic	and	Memory	Devices



Long Term: New Materials
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We might already be too late

Historically it is 10 years from lab to Fab…

But lets talk about it anyways.



Borkar-Shalf Criteria for
New Device Technology

1.Gain
2.Signal to Noise
3.Scalability
4.Manufacturability



Alternatives to Conventional MOS Switches
(all require lower clock rate, and much more parallelism)
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Transition probability=0.01 !
Cap. per inverter=0.57fF!

Energy-Performance Comparison 
(30-stage fanout-4 inverter chains) 

Today’s CMOS
Technology

Tunneling FET 
advantage only at 
low clock rates



Systems,	Packaging	and	Architecture



Now and Intermediate term:
3D Stacking and Advanced Packaging
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R&D in manufacturing at 2-nm node
CXRO EUV Test Facility at LBNL 

Foundry 
Node

IDM 
Node

Min half 
pitch

7 nm 10 nm 22 nm
5 nm 7 nm 16 nm
3 nm 5 nm 12 nm



Choose to Scale Something Else
(The future of Moore’s Law Might not be about logic density…)

Stanford N3XT



Increase Logic Density and 
Efficiency using Specialization
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Current Architectures are Wasteful
(how far can we push architecture scaling using specialization?)

Even on today’s systems, Energy consumed by ALU 
Is 1-10% of energy consumed  to get the data to the 
ALU and describe the operations to perform.

Code HardwareConvert to

DFT &
Climate
Kernels

Must Dramatically Reduce the cost 
of creating specialized hardware!



Need to Accelerate Pace of Discovery
for Advanced Architectures

Integrate
(application)

Characterize
(Benchmark, 

analyze apps.)

Simulate Architectures/Devices
(Chisel, OpenSOC, GEM5)

Synthesize/Prototype
(CXRO, Nanofab)
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Smoother Performance (Fine Grid) 

All Optimizations 
+Fusion & Wavefront 
+Fusion & Partial Sums 
+Fusion 
Baseline 
Roofline Memory Bound 

Fig. 9. Jacobi smoother performance attained with the CHiLL compiler by
optimization, operator, and platform. NOTE, the Roofline memory bound is for
the non-communication-avoiding (no wavefront) implementation and is lower
than ApplyOp due to additional data movement like the RHS. The wavefront
transformation allows CHiLL to exceed this limit.

Unfortunately, the more compute-intensive 27- and 125-point
stencils demand efficient SIMDization to reach their Roofline
bounds. Enabling the “Partial Sums” optimization in CHiLL al-
lows the compiler to automatically restructure these stencils to
eliminate superfluous additions and regiment the computation
for SIMDization by the backend compiler. The benefit is clear
— a more than doubling of 125-point smoother performance
and performance near the Roofline bound for all operators.

Naively, one may conclude that reaching the Roofline-bound
represents the upper end of performance. However, this simply
implies that a new set of algorithmic optimizations are required
to further improve performance. As smooths are applied in
sequence within the multigrid V-Cycle, it is possible, to
view their execution as a quadruply nested loop. Manually
reordering these loops is beneficial, but unproductive [26].
Conversely, our additions to CHiLL allow the compiler to
automatically add ghost zones and restructure the loops into a
communication-avoiding “wavefront” without loss of accuracy
(the result is bit identical) or productivity. As seen in Figure 9,
our approach attains roughly a 2⇥ performance boost for
the 7- and 27-point smoother on Edison. (Note, “All Opti-
mizations” include tuned nested OpenMP.) Whereas Edison is
heavily memory-limited, Hopper is not. As such, the benefit
of a communication-avoiding algorithm is limited on Hopper.
Communication-avoiding 13- and 125-point smoothers suffer
on two axes. First, generating wavefronts for these operators
require skewing loops by the larger stencil radius. This larger
skew factor increases the working set, increases cache pressure
and makes it difficult to fit the working set in the fastest
caches. Second, the 125-point operator is likely compute-
bound on Hopper and nearly compute-bound on Edison. Thus,
the potential benefit from communication-avoiding is small.

E. Smoother Performance Throughout the V-Cycle

Unlike simple explicit methods that only need to attain high
performance for a stencil on a large grid, multigrid requires
high performance on grids of exponentially varying size. In
Figure 10, we explore the performance of the 27- and 125-
point smoothers on Edison as they operate on coarser (smaller)
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Smoother Performance by Level 

All Optimizations 
+Fusion & Wavefront 
+Fusion & Partial Sums 
+Fusion 
Baseline 

Fig. 10. Jacobi smoother performance on Edison attained with the CHiLL
compiler as a function of level in the V-Cycle (2563 fine grids down to 163
coarse grids) for the 27- and 125-point operators. Observe that the reference
implementation of the memory-limited 27-point operator receives a cache
boost on the coarser levels while the compute-limited 125-point does not.

grids. Examining the baseline implementation for the 27-point
operator shows the expected rise in performance when moving
to the coarser grids, which nominally fit in ever lower levels of
cache. Note, the first smooth at each level will inevitably read
from DRAM. As such, high cache bandwidths only amortize
this slow initial smooth. On small grids, efficient 12-way
OpenMP multithreading becomes impossible and performance
drops. The 125-point smoother sees a similar behavior but to
a lesser degree as it is ultimately compute-limited.

As optimizations are enabled in CHiLL, we see the compiler
can nearly sustain constant performance for the 2563, 1283,
and 643 levels for the 27-point operator by automatically
tuning for the optimal optimizations. Similarly, Table II shows
the compiler continually shifts the set and parameterization of
the optimizations employed for the 125-point smoother at each
level of the V-Cycle. A manually-optimized implementation
would likely only target the fine grid and would thus deliver
lower performance on the coarse grids, while significantly
increasing programmer overhead.

The partial sums optimization requires a two pass approach
in which the first creates a few auxiliary results. The cost of
this initial pass is amortized on large arrays but becomes an
impediment on small arrays. Thus the benefit of partial sums
decreases on the smaller grids.

F. miniGMG Solver Performance and Error

Figure 11 presents the performance of the miniGMG multigrid
solver using either the existing Intel compiler (baseline) or our
optimizing CHiLL compiler as a function of discretization and
platform. Performance is expressed in millions of degrees of
freedom solved per second (DOF/s). For this scalar problem,
fine-grid cell is one degree of freedom. Thus, solving a
2563 grid in 1 second would equate to 16.78 million DOF/s.
Generally, the CHiLL compiler can provide an overall speedup
of about 2⇥ using all available optimizations. The attained
speedup was a bit less on the 13-point operator as it did not
benefit from partial sums and achieving high performance on a
communication-avoiding wavefront is particularly challenging.



Open	Hardware	for	Flexible	SoCs
(Synthesis	&	Simulation)

Chisel RISC-V OpenSOC
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Open Source fabric
To integrate accelerators
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DSL for rapid prototyping
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Combining Compact Device Models with 
Hardware Architectural Simulators

Tunnel FETs

Negative cap FETs

Superconducting logic

Carbon nanotubes

George Michelogiannakis
Dilip Vasudevan



v Combined several techniques for a holistic, 
ab-initio, atomistic (beyond TCAT) device simulation

v LS3DF Device-size selfconsistent ab initio calculations to 
get atomistic potential profile, band alignment, 
based boundary conditioned Poisson solver

v Based on the potential profile, and scattering state calculations
to simulate the device transport, and leakage current etc. 

v Using electron-phonon coupling to calculate the heat generation
and dissipation at atomic scale

A		shallow	defect	state	in	Si. the	electron	(left)	and	hole	(right)	
localizations	in	a	bulk	CH3NH3PbI3 material.	
The	small	dots	are	atoms.	

Holistic Electronic Device simulations



Beyond Moore Modeling Workflow

End-to-End Post-Moore Design Space Exploration 
Tool Flow 

George Michelogiannakis
Dilip Vasudevan



Incorporating Emerging Device 
Models into Architecture Simulation
⧫ We incorporated TFET models into transistor-level netlists and 

implemented higher-level logic blocks
⧫ Next steps:

▪ NCFETs, CNFETs
▪ More complicated logic blocks

TFET Spice Simulation
- Inverter

TFET Spice Simulation
- Adder

George Michelogiannakis
Dilip Vasudevan



Design	Architectures	Around	Design	Patterns

7 Giants of Data (NRC) 7 Motifs of Simulation

Basic statistics Monte Carlo methods

Generalized N-Body Particle methods

Graph-theory Unstructured meshes

Linear algebra Dense Linear Algebra

Optimizations Sparse Linear Algebra

Integrations Spectral methods

Alignment Structured Meshes

Identify common computational patterns



Organizing principles for Non-Von
”Spatial Computing”

· Data Movement will remain a challenge even with exotic materials, but 
especially CMOS 

· Copper is as good of a conductor as you can expect at room temperature
· With even lower power switches, challenges skews even more to data 

movement (NEED Spatial Computing approach)
· Push towards more parallelism (more tesselation of the memory 

structures)…. Strong Scaling 

Strong Scaling extrapolates to limit case with no 
separation of memory and compute (e.g. one PDE 
cell per processing element)
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f n+1
i,j,k = 2f n

i,j,k - f n-1
i,j,k

+ Dt2/Dx2(f n
i+1,j,k -2 f n

i,j,k + f n
i-1,j,k ) 

+ Dt2/Dy2(f n
i,j+1,k -2 f n

i,j,k + f n
i,j-1,k )

+ Dt2/Dz2(f n
i,j,k+1 -2 f n

i,j,k + f n
i,j,k-1 )

Discretized	PDE	Representation	in	DSL

Concept: Solid State Virtual Fluid
Extreme (spatial) Specialization + New Devices + New programming models
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1000	Layers
Monolithic
Stacking

PDEcell /	PICcell:		Ultra-simple	compute	
engine	 (50k	gates)	calculates	finite-
difference	updates,	and	particle	forces	from	
neighbors.	 	Microinstructions	 specify	the	
PDE	equation,	 stencil,	and	PIC	operators.
Novel	features:	variable	length	streaming	
integer	arithmetic	and	novel	PIC	particle	
virtualization	scheme.

Computational	Lattice:	
PDECells are	tiles	in	a	
lattice/array	on	each	2D	
planar	chip	layer.		Target	
120x120	tiles	per	mm2

@28nm	lithography.	 	Novel	
Features:	each	tile	represents	
single	cell	of	 computational	
domain	 (pushes	 to	limit	of	
strong-scaling).	

Monolithic	3D	Integration:	Integrate	
layers	of	compute	elements	using	
emerging	monolithic	 3D	chip	
stacking.	
Novel	Features:	1000	layer	stacking	
(20x	more	than	current	practice).		
Area	efficient	inter-layer	connectivity	
and	new	energy	efficient	transistor	
logic	(ncFET).	 		
1	Petaflop	equivalent	performance	 in	
300mm^2	for	<	200Watts.

Scalar	waves	in	3D	are	solutions	of	the	hyperbolic	wave	
equation:		-f,tt +	f,xx +	f,yy +	f,zz =	0	
Initial	value	problem:	given	data	for	f and	its	first	time	
derivativeat	initial	 time,	the	wave	equation	says	how	it	
evolves	with	time
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Executes in Wavefronts
R[n+1](0,0,0)	=	0
R[n+1](0,0,0)	+=	2*R[n](0,0,0)
R[n+1](0,0,0)	 -=		R[n-1](0,0,0)
R[n+1](0,0,0)	+=	C	*	R[n+1](+1,0,0)
R[n+1](0,0,0)	 -=	C	*	2	*	R[n](0,0,0)
R[n+1](0,0,0)	+=	C	*	R[n](-1,0,0)
R[n+1](0,0,0)	+=	C	*	R[n+1](0,+1,0)

.	.	.	.

Compiles to MicroOps



Programming Model Challenges
for Non-VonNeumann & Specialized Architectures
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PDE	in	Domain	Specific	Representation

Compiled	to	MicroOps

Fed	Sequentially	to	

Von Neumann ~= 
Instruction Processor What the heck is this?

Modern languages (including many classes of DSLs
Were designed with instruction processors in mind
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Beyond Moore Codesign Framework

Modeling
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Process Module Demonstrations
• EUV and novel lithography
• Diffusion, etch, implant simulation

Test Circuit Fab and Measurement
• Subcircuit measurement

Fundamental Materials Science
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Conclusion

· The end of lithography scaling as we know it is coming within 
a decade (about when Exascale is done)

· Neuromorphic and Quantum do not address this challenge
§ They expand computing to exciting new areas!
§ But do not replace Digital logic where 
§ And all are affected by lithography challenge!

· But it need not mean the end of Moore’s Law
§ We believe in More Moore!
§ But it will require innovation!

· Requires a LOT of lead time, so we must start today!
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Scientific Computing on 
Non-Von Neumann
Digital Electronics



Von Neumann Architecture

EmulatesVon Neumann Logic Array



PIM is NOT Non-Von Neumann
Its just better packaging

Memory

Processor



These ARE Non-Von Neumann

Non-Digital Non-Von 
Neumann

Digital Non-Von 
Neumann

Neuromorphic

Quantum

Parallel
Computing

FPGA
Reconfigurable 

Computing
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Cost of Data Movement Increasing Relative to 
Ops

FLOPs cost less than 
on-chip data movement! 

(NUMA) 



Organizing principles for Non-Von Digital Design

· Data Movement will remain a challenge even with exotic materials, but 
especially CMOS 

· Copper is as good of a conductor as you can expect at room temperature
· With even lower power switches, challenges skews even more to data 

movement (NEED Spatial Computing approach)
· Push towards more parallelism (more tesselation of the memory 

structures)…. Strong Scaling 

Strong Scaling extrapolates to limit case with no 
separation of memory and compute (e.g. one PDE 
cell per processing element)



Spatial Computing



PDE on a Block Structured Grid
Extrapolated to Non-Von Neumann



PDE on a Block Structured Grid
Extrapolated to Non-Von Neumann



PDE on a Block Structured Grid
Extrapolated to Non-Von Neumann
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1000	Layers
Monolithic
Stacking

PDEcell /	PICcell:		Ultra-simple	compute	
engine	 (50k	gates)	calculates	finite-
difference	updates,	and	particle	forces	from	
neighbors.	 	Microinstructions	 specify	the	
PDE	equation,	 stencil,	and	PIC	operators.
Novel	features:	variable	length	streaming	
integer	arithmetic	and	novel	PIC	particle	
virtualization	scheme.

Computational	Lattice:	
PDECells are	tiles	in	a	
lattice/array	on	each	2D	
planar	chip	layer.		Target	
120x120	tiles	per	mm2

@28nm	lithography.	 	Novel	
Features:	each	tile	represents	
single	cell	of	 computational	
domain	 (pushes	 to	limit	of	
strong-scaling).	

Monolithic	3D	Integration:	Integrate	
layers	of	compute	elements	using	
emerging	monolithic	 3D	chip	
stacking.	
Novel	Features:	1000	layer	stacking	
(20x	more	than	current	practice).		
Area	efficient	inter-layer	connectivity	
and	new	energy	efficient	transistor	
logic	(ncFET).	 		
1	Petaflop	equivalent	performance	 in	
300mm^2	for	<	200Watts.
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Discretized	PDE	Representation	in	DSL

Concept: Solid State Virtual Fluid
Extreme (spatial) Specialization + New Devices + New programming models
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1000	Layers
Monolithic
Stacking

PDEcell /	PICcell:		Ultra-simple	compute	
engine	 (50k	gates)	calculates	finite-
difference	updates,	and	particle	forces	from	
neighbors.	 	Microinstructions	 specify	the	
PDE	equation,	 stencil,	and	PIC	operators.
Novel	features:	variable	length	streaming	
integer	arithmetic	and	novel	PIC	particle	
virtualization	scheme.

Computational	Lattice:	
PDECells are	tiles	in	a	
lattice/array	on	each	2D	
planar	chip	layer.		Target	
120x120	tiles	per	mm2

@28nm	lithography.	 	Novel	
Features:	each	tile	represents	
single	cell	of	 computational	
domain	 (pushes	 to	limit	of	
strong-scaling).	

Monolithic	3D	Integration:	Integrate	
layers	of	compute	elements	using	
emerging	monolithic	 3D	chip	
stacking.	
Novel	Features:	1000	layer	stacking	
(20x	more	than	current	practice).		
Area	efficient	inter-layer	connectivity	
and	new	energy	efficient	transistor	
logic	(ncFET).	 		
1	Petaflop	equivalent	performance	 in	
300mm^2	for	<	200Watts.

Scalar	waves	in	3D	are	solutions	of	the	hyperbolic	wave	
equation:		-f,tt +	f,xx +	f,yy +	f,zz =	0	
Initial	value	problem:	given	data	for	f and	its	first	time	
derivativeat	initial	 time,	the	wave	equation	says	how	it	
evolves	with	time
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Scalar waves in 3D are solutions of the hyperbolic 
wave equation:  -f,tt + f,xx + f,yy + f,zz = 0 
Initial value problem: given data for f and its first 
time derivative at initial time, the wave equation 
says how it evolves with time

r
time

Initial Value Problem (continuous space)



Numerical solve by discretising on a grid, using 
explicit  finite differencing (centered, second order)
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Decomposing Into PDE Weights
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Fed	Sequentially	to	

PDE Weights

PDE Domain Specific Representation



Challenges of Limit-Case Non-Von Neumann Digital

R[n+1](0,0,0)	=	0
R[n+1](0,0,0)	+=	2*R[n](0,0,0)
R[n+1](0,0,0)	 -=		R[n-1](0,0,0)
R[n+1](0,0,0)	+=	C	*	R[n+1](+1,0,0)
R[n+1](0,0,0)	 -=	C	*	2	*	R[n](0,0,0)
R[n+1](0,0,0)	+=	C	*	R[n](-1,0,0)
R[n+1](0,0,0)	+=	C	*	R[n+1](0,+1,0)

.	.	.	.

MicroOp
Entry	Point

1

1

2

3

4

2

3

4

5

3

4

5

6

2

3

2

3

4

3

4

5

4

5

6

1st compute
wave

2nd compute
wave

3rd compute
wave

4th compute
wave

f n+1
i,j,k = 2f n

i,j,k - f n-1
i,j,k

+ Dt2/Dx2(f n
i+1,j,k -2 f n

i,j,k + f n
i-1,j,k ) 

+ Dt2/Dy2(f n
i,j+1,k -2 f n

i,j,k + f n
i,j-1,k )

+ Dt2/Dz2(f n
i,j,k+1 -2 f n

i,j,k + f n
i,j,k-1 )

PDE	in	Domain	Specific	Representation

Compiled	to	MicroOps

Fed	Sequentially	to	

Von Neumann ~= 
Instruction Processor What the heck is this?

Modern languages (including many classes of DSLs
Were designed with instruction processors in mind


