

Digital Computing Beyond Moore's Law

Supercomputing Frontiers, Singapore

March 16, 2017

John Shalf

Lawrence Berkeley National Laboratory

Post Exsascale Landscape MIND THE GAP!

Moore's Law

Lithography Scaling 2x increased density 2x lower power Every 2 years!

Now – 2025

Moore's Law continues through ~5nm -- beyond which diminishing returns are expected. End of Moore's Law 2025-2030?

Post Moore Scaling

New materials and devices introduced to enable continued scaling of digital electronics performance and efficiency.

2025+

2016

2016-2025

"I predict Moore's Law will never end." That way I will only be wrong once!"

Alan Kay: Communications of the ACM 1989

SO WHAT IF MOORE'S LAW ENDS ? WHY SHOULD I CARE?

Nothing lasts forever... Especially an exponential trend!

IT challenge for future electricity supply Global Semiconductor market size ~ \$5Trillion by 2030

www.alliancetrustinvestments.com/sri-hub/posts/Energy-efficient-data-centres www.iea.org/publications/freepublications/publication/gigawatts2009.pdf

Moore's Law is an economic theory. *There are ways to continue scaling of digital technology after the end of classical lithographic scaling*

(e.g. end of Dennard Scaling in ~2004 No more exponential clock frequency scaling Move to exponentially increasing parallelism)

Post-Lithographic Scaling Options

hni

BERKELEY LAB

There are other ways to continue Moore's Scaling!

IDA/iARPA Study 2014

- Invest in extending reach of computing to new areas where digital is not efficient by studying Quantum, Neuromorphic
- But don't forget that you need digital (it offers a kind of computation that is not well replicated alternatives)

See Our Article in 2016 December Issue of IEEE Computer!

COVER FEATURE REBOOTING COMPUTING

John M. Shalf, Lawrence Berkeley National Laboratory Robert Leland, Sandia National Laboratories

TABLE 1. Summary of techology options for extending digital electronics.						
Improvement Class	Technology	Timescale	Complexity	Risk	Opportunity	
Architecture and software advances	Advanced energy management	Near-Term	Medium	Low	Low	
	Advanced circuit design	Near-Term	High	Low	Medium	
	System-on-chip specialization	Near-Term	Low	Low	Medium	
	Logic specialization/dark silicon	Mid-Term	High	High	High	
	Near threshold voltage (NTV) operation	Near-Term	Medium	High	High	
3D integration and packaging	Chip stacking in 3D using thru-silicon vias (TSVs)	Near-Term	Medium	Low	Medium	
	Metal layers	Mid-Term	Medium	Medium	Medium	
	Active layers (epitaxial or other)	Mid-Term	High	Medium	High	
Resistance reduction	Superconductors	Far-Term	High	Medium	High	
	Crystaline metals	Far-Term	Unknown	Low	Medium	
Millivolt switches (a better transistor)	Tunnel field-effect transistors (TFETs)	Mid-Term	Medium	Medium	High	
	Heterogeneous semiconductors/strained silicon	Mid-Term	Medium	Medium	Medium	
	Carbon nanotubes and graphene	Far-Term	High	High	High	
	Piezo-electric transistors (PFETs)	Far-Term	High	High	High	
Beyond transistors (new logic paradigms)	Spintronics	Far-Term	Medium	High	High	
	Topological insulators	Far-Term	Medium	High	High	
	Nanophotonics	Near/Far-Term	Medium	Medium	High	
	Biological and chemical computing	Far-Term	High	High	High	

Accelerated development & optimization For new Logic and Memory Devices

Long Term: New Materials

New architectures and packaging

We might already be too late

Historically it is 10 years from lab to Fab...

But lets talk about it anyways.

Borkar-Shalf Criteria for New Device Technology

1.Gain

2.Signal to Noise

3.Scalability

- 4.Manufacturability

Systems, Packaging and Architecture

90

CADU

F

Now and Intermediate term: 3D Stacking and Advanced Packaging

R&D in manufacturing at 2-nm node CXRO EUV Test Facility at LBNL

Choose to Scale Something Else

(The future of Moore's Law Might not be about logic density...)

Stanford N3XT

Increase Logic Density and Efficiency using Specialization

First 10 years

Current Architectures are Wasteful

(how far can we push architecture scaling using specialization?)

Need to Accelerate Pace of Discovery for Advanced Architectures

Open Hardware for Flexible SoCs (Synthesis & Simulation)

Chisel

DSL for rapid prototyping of circuits, systems, and arch simulator components

Back-end to synthesize HW with different devices Or new logic families

RISC-V

Open Source Extensible ISA/Cores

Re-implement processor With different devices or Extend w/accelerators

OpenSOC

Open Source fabric To integrate accelerators And logic into SOC

Platform for experimentation with specialization to extend Moore's Law

Combining Compact Device Models with Hardware Architectural Simulators

George Michelogiannakis Dilip Vasudevan

 Using electron-phonon coupling to calculate the heat generation and dissipation at atomic scale

the electron (left) and hole (right) localizations in a bulk CH₃NH₃PbI₃ material. The small dots are atoms.

Beyond Moore Modeling Workflow

End-to-End Post-Moore Design Space Exploration Tool Flow

Incorporating Emerging Device Models into Architecture Simulation

- Next steps:
 - NCFETs, CNFETs
 - More complicated logic blocks

TFET Spice Simulation - Inverter George Michelogiannakis Dilip Vasudevan

TFET Spice Simulation - Adder

Design Architectures Around Design Patterns

BERKELEY LAB

7 Giants of Data (NRC)	7 Motifs of Simulation
Basic statistics	Monte Carlo methods
Generalized N-Body	Particle methods
Graph-theory	Unstructured meshes
Linear algebra	Dense Linear Algebra
Optimizations	Sparse Linear Algebra
Integrations	Spectral methods
Alignment	Structured Meshes

Identify common computational patterns

Organizing principles for Non-Von "Spatial Computing"

- Data Movement will remain a challenge even with exotic materials, but especially CMOS
- Copper is as good of a conductor as you can expect at room temperature
- With even lower power switches, challenges skews even more to data movement (NEED Spatial Computing approach)
- Push towards more parallelism (more tesselation of the memory structures).... Strong Scaling

Strong Scaling extrapolates to *limit case* with no separation of memory and compute (e.g. one PDE cell per processing element)

Concept: Solid State Virtual Fluid

Extreme (spatial) Specialization + New Devices + New programming models

.....

Programming Model Challenges for Non-VonNeumann & Specialized Architectures

Modern languages (including many classes of DSLs Were designed with instruction processors in mind

A Framework for Accelerated Technology Development Beyond Moore's Law

Drive Focus and Impact via a Multiscale **CoDesign Framework** BERKELEY LAB

Reducing Solution Space

Conclusion

- The end of lithography scaling as we know it is coming within a decade (*about when Exascale is done*)
- Neuromorphic and Quantum do not address this challenge
 - They expand computing to exciting new areas!
 - But do not replace Digital logic where
 - And *all* are affected by lithography challenge!
- But it need not mean the end of Moore's Law
 - We believe in *More Moore!*
 - But it will require *innovation*!
- Requires a LOT of lead time, so we must start today!

Extra

Scientific Computing on Non-Von Neumann Digital Electronics

PIM is NOT Non-Von Neumann Its just better packaging

These ARE Non-Von Neumann

Cost of Data Movement Increasing Relative to Ops

- Data Movement will remain a challenge even with exotic materials, but especially CMOS
- Copper is as good of a conductor as you can expect at room temperature
- With even lower power switches, challenges skews even more to data movement (NEED Spatial Computing approach)
- Push towards more parallelism (more tesselation of the memory structures).... Strong Scaling

Strong Scaling extrapolates to *limit case* with no separation of memory and compute (e.g. one PDE cell per processing element)

Spatial Computing

PDE on a Block Structured Grid Extrapolated to Non-Von Neumann

PDE on a Block Structured Grid Extrapolated to Non-Von Neumann

PDE on a Block Structured Grid Extrapolated to Non-Von Neumann

PDEcell / PICcell: Ultra-simple compute engine (50k gates) calculates finitedifference updates, and particle forces from neighbors. Microinstructions specify the PDE equation, stencil, and PIC operators. *Novel features:* variable length streaming integer arithmetic and novel PIC particle virtualization scheme.

Concept: Solid State Virtual Fluid

Extreme (spatial) Specialization + New Devices + New programming models

.....

Scalar waves in 3D are solutions of the hyperbolic wave equation: $-\phi_{,tt} + \phi_{,xx} + \phi_{,yy} + \phi_{,zz} = 0$ **Initial value problem**: given data for ϕ and its first time derivative at initial time, the wave equation says how it evolves with time

Discretized Representation

Numerical solve by discretising on a grid, using explicit *finite differencing* (centered, second order)

 $\phi^{n+1}_{i,j,k} = 2\phi^{n}_{i,j,k} - \phi^{n-1}_{i,j,k}$ $+ \Delta t^{2} / \Delta x^{2} (\phi^{n}_{i+1,j,k} - 2 \phi^{n}_{i,j,k} + \phi^{n}_{i-1,j,k})$ $+ \Delta t^{2} / \Delta y^{2} (\phi^{n}_{i,j+1,k} - 2 \phi^{n}_{i,j,k} + \phi^{n}_{i,j-1,k})$ $+ \Delta t^{2} / \Delta z^{2} (\phi^{n}_{i,j,k+1} - 2 \phi^{n}_{i,j,k} + \phi^{n}_{i,j,k-1})$ $\underbrace{\text{time}}_{\bullet}$

Decomposing Into PDE Weights

PDE Domain Specific Representation

.....

Modern languages (including many classes of DSLs Were designed with instruction processors in mind