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Why worry about floating point? 

a = (3.2e8, 1, –1,   8.0e7) 

b = (4.0e7, 1, –1, –1.6e8) 

Single Precision, 32 bits: 

Note: All values are integers that can be expressed exactly in the 

IEEE 754 Standard floating-point format (single or double precision) 

Double Precision, 64 bits: 

a ∙ b = 0 

a ∙ b = 0 

Correct answer: a ∙ b = 2 

Most linear 

algebra is 

unstable with 

floats!  

Find the scalar product a ∙ b: 



What’s wrong with IEEE 754? A start: 

• No guarantee of identical results across systems 

• It’s a guideline, not a standard 

• Breaks the laws of algebra: 
 

a + (b + c) ≠ (a + b) + c       a∙(b + c) ≠ a∙b + a∙c 
 

• Overflow to infinity, or underflow to zero, create an 

infinite loss of accuracy. 

IEEE floats are weapons of math destruction.  



What else is wrong with IEEE 754? 

• Exponents usually take too many bits 

• Accuracy is flat across a vast range, then falls off a cliff 

• Subnormal numbers are a headache (“gradual underflow”) 

• Divides are messy and slow 

• Wasted bit patterns: “negative zero,” too many NaN values 

Do we really need 9,007,199,254,740,990 ways 

to say something is Not a Number?? 



Contrasting Calculation “Esthetics” 

IEEE Standard 

(1985) 

Floats, f = n × 2m 

m, n are integers 

Intervals [f1, f2], all 

x such that f1 ≤ x ≤ f2 

Type 1 Unums 

(2013) 

“Guess” mode, 

flexible word size 

Unums, ubounds, 

sets of uboxes 

Type 2 Unums 

(2016) 

“Guess” mode, fixed 

word size 

Sets of Real Numbers 

(SORNs) 

Type 3 Unums 

(2017) 
Posits Valids 

Rounded: cheap, 

uncertain, “good enough” 

Rigorous: more work, 

certain, mathematical 

If you mix the two esthetics, you end up satisfying neither. 





Metrics for Number Systems 

• Decimals of Accuracy   –log10(log10(xj / xj+1)) 

• Dynamic range       log10(maxreal / minreal) 

• Percentage of operations that are exact 

(closure under + – × ÷ √ etc.) 

• Average accuracy loss when inexact 

• Entropy per bit (maximize information) 

• Accuracy benchmarks: simple formulas, linear 

equation solving, math kernels… 



Posit Arithmetic: 

Beating floats at their own game 

Fixed size, nbits. 

Note: The “ubit” is only for the valid type; 

     posits round, if necessary. 

es = exponent size = 0, 1, 2,… bits. 



Posit Arithmetic Example 

Here, es = 3. Float-like circuitry is all that is needed 

(integer add, integer multiply, shifts to scale by 2k) 
 

Posits do not underflow or overflow. There is no NaN. 

Simpler, smaller, faster circuits than IEEE 754 

= 3.55⋯×10–6 



Posits use the Projective Reals 

• Like Type 2 unums, 

posits map reals to 

standard signed 

integers. 

• This eliminates 

“negative zero” and 

other IEEE float issues 00 

01 

10 

11 

±∞ 

0 

+ – 



Example with 

nbits = 3, es = 1. 

 

Value at 45° is always 

 

 

If bit string < 0, set sign to – 

and negate integer. 

useed 

useed = 2 
es 2 

Mapping to the Projective Reals 



Rules for inserting new points 
Between ±maxpos and ±∞, 

scale up by useed. 

(New regime bit) 

 

Between 0 and ±minpos, 

scale down by useed. 

(New regime bit) 

 

Between 2m and 2n where 

n – m ≥ 2, insert 2(m + n)/2. 

(New exponent bit) 

useed 
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At nbits = 5, fraction 

bits appear. 

Between x and y where 

y ≤ 2x, insert (x + y)/2. 
 

Existing values stay put as 

trailing bits are added. 
 

Appending bits increases 

accuracy east and west, 

dynamic range 

north and south! 

useed 
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Posits v. Floats: a metrics-based study 
• Compare quarter-precision 

IEEE-style floats 

• Sign bit, 4 exponent bits, 

3 fraction bits 

• smallsubnormal = 1/512; maxfloat = 240. 

• Dynamic range of five orders of magnitude 

• Two bit patterns that mean zero 

• Fourteen bit patterns that mean “Not a Number” (NaN) 

 



Float accuracy tapers only on left 

• Min:  0.52 
decimals 

• Avg:  1.40 
decimals 

• Max: 1.55 
decimals 

Graph shows decimals of accuracy from minfloat to maxfloat. 



Posit accuracy tapers on both sides 

• Min:  0.22 
decimals 

• Avg:  1.46 
decimals 

• Max: 1.86 
decimals 

Graph shows decimals of accuracy from minpos to maxpos. 

But posits cover seven orders of magnitude, not five. 



Both graphs at once 

⇦ Posits 

⇦ Floats 

Where most calculations occur 



Matching float dynamic ranges 

Note: Isaac Yonemoto has shown that 8-bit posits 

suffice for neural networks, with es = 0 



8-bit posits speed neural nets 

Sigmoid functions take 

1 cycle in posits, vs. 

dozens of cycles with 

float math libraries. 

(Observation by I. Yonemoto) 



ROUND 1 

Unary Operations 

 

1/x, √x, x2, log2(x), 2x 



Closure under Reciprocation, 1/x 



Closure under Square Root, √x 



Closure under Squaring, x2 



Closure under log2(x) 



Closure under 2x 



ROUND 2 
 

 

Two-Argument Operations 

 

x + y, x × y, x ÷ y 



Addition Closure Plot: Floats 
18.533% exact 

70.190% inexact 

  0.000%  underflow 

  0.635% overflow 

10.641% NaN 

Inexact results are magenta; 

the larger the error, the 

brighter the color. 

 

Addition can overflow, but 

cannot underflow. 



Addition Closure Plot: Posits 
25.005% exact 

74.994% inexact 

  0.000%  underflow 

  0.000% overflow 

  0.002% NaN 

Only one case is a NaN: 
 

±∞ + ±∞ 
 

With posits, a NaN always 

stops the calculation. (Valids 

handle NaNs as sets.) 



All decimal losses, sorted 



Multiplication Closure Plot: Floats 
22.272% exact 

58.279% inexact 

  2.475%  underflow 

  6.323% overflow 

10.651% NaN 

Floats score their first win: 

more exact products than 

posits… 
 

but at a terrible cost! 



Multiplication Closure Plot: Posits 
18.002% exact 

81.995% inexact 

  0.000%  underflow 

  0.000% overflow 

  0.003% NaN 

Only two cases 

produce a NaN: 
 

±∞ × 0 

0 × ±∞ 
 



The sorted losses tell the real story 



Division Closure Plot: Floats 

22.272% exact 

58.810% inexact 

  3.433%  underflow 

  4.834% overflow 

10.651% NaN 

Like multiplication, but 

with less symmetry. 



Division Closure Plot: Posits 
18.002% exact 

81.995% inexact 

  0.000%  underflow 

  0.000% overflow 

  0.003% NaN 

Posits do not have 

denormalized values. Nor do 

they need them. 
 

Hidden bit = 1,  
 

always. Simplifies hardware. 



ROUND 3 

 

Higher-Precision Operations 
 

32-bit formula evaluation 

128-bit triangle area calculation 

LINPACK solved with… 16 bits! 



Accuracy on a 32-Bit Budget 
27 /10 - e

p - 2 + 3( )
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67 /16

= 302.8827196¼Compute: 
with ≤ 32 bits 

per number. 

Number 

Type 

Dynamic 

Range 

Answer Error or Range 

IEEE 32-bit float 2×1083 302.912⋯ 0.0297⋯ 

Interval arithmetic 1012 [18.21875, 33056.] 3.3⋯×104 

Type 1 unums 4×1083 (302.75, 303.) 0.25 

Type 2 unums 1099 302.887⋯ 0.0038⋯ 

Posits, es = 3 3×10144 302.88231⋯ 0.00040⋯ 

Posits, es = 1 1036 302.8827819⋯ 0.000062⋯ 

Posits beat floats at both dynamic range and accuracy. 



Thin Triangle Area 

From “What Every Computer Scientist Should Know About Floating-Point Arithmetic,” 

David Goldberg, published in the March, 1991 issue of Computing Surveys 

Find the area of this thin triangle 

using the formula 

and 128-bit IEEE floats, then 128-bit posits. 
 

Answer, correct to 36 decimals: 

3.14784204874900425235885265494550774⋯×10–16 



A Grossly Unfair Contest 
IEEE quad-precision floats get only one digit right: 

To get this accurate an answer with IEEE floats, you 

need the octuple precision (256-bit) format. 
 

Posits don’t even need 128 bits. They can get a very 

accurate answer with only 119 bits. 

3.63481490842332134725920516158057683⋯×10–16 

128-bit posits get 36 digits right: 

3.14784204874900425235885265494550774⋯×10–16 



LINPACK: Ax = b 
16-bit posits versus 16-bit floats 

• 100 by 100; random Aij entries in (0, 1)  

• b chosen so x should be all 1s exactly 

• Classic LINPACK method: LU factorization with partial 
pivoting. Allow refinement using residual. 

IEEE 16-bit Floats 

Dynamic range: 1012 

Maximum error: 0.011 

Decimal accuracy: 1.96 

16-bit Posits 

Dynamic range: 1016 

Maximum error: NONE 

Decimal accuracy: ∞ 

Note: work funded in part by DARPA under contract BAA 16-39  



64-bit Float versus 16-bit posit 
16-bit Posits 

1 

1 

1 

1 

1 

1 

64-bit IEEE Floats 

1.0000000000000124344978758017532527446746826171875 

0.9999999999999837907438404727145098149776458740234375 

1.0000000000000193178806284777238033711910247802734375 

0.99999999999998501198916756038670428097248077392578125 

0.9999999999999911182158029987476766109466552734375 

0.99999999999999900079927783735911361873149871826171875 

⋮ ⋮ 



Remember this from the beginning? 

a = (3.2e8, 1, –1,   8.0e7) 

b = (4.0e7, 1, –1, –1.6e8) 

Posit answer:  a ∙ b = 2 (correct) 

Find the scalar product a ∙ b: 

IEEE floats require 128-bit precision to get it right. 

Posits (es = 3) need only 25-bit precision to get it right. 

Fused dot product is 3–6 times faster than the float method.* 

* “Hardware Accelerator for Exact Dot Product,” 

David Biancolin and Jack Koenig, ASPIRE Laboratory, UC Berkeley 



• Type 1 unums need 
variable size; require 
unpacked form for 
simple indexing 

• Type 2 unums need 
table look-up; only 
scale to about 20 bits 

• But: Posits and Valids 
are ready to go now! 

Type 1, 2 unum 

hardware challenges… 



Building posit chips: The race is on 

• Like IEEE floats, but 
simpler and less area (!) 

• Multiplier, adder designs 
are done 

• REX Computing, and a 
handful of startups are 
working on it; Intel is 
showing interest 

• Looks ideal for GPUs; 
more arithmetic per chip 

Regime 

Shifter 

Posit 

Adder 



Posit pairs beat intervals at their 
own game, too: Valid mode 

“Posit” mode: Round unum if operation yields an inexact. 
 

“Valid” mode: Rigorous bounds; “NaN” answers are sets 

±∞ 

0 

1 –1 

1/2 

2 –2 

–1/2 

start 
posit 

end 
posit 



32-bit precision may suffice now! 
• Early computers used 36-bit floats. 

• IBM System 360 went to 32-bit. 

• It wasn’t quite enough. 

• What if 32-bit posits could replace 
64-bit floats for structural analysis, 
circuit simulation, etc.? 

• Potential 2x shortcut to exascale. 
Or more. 



Summary 
• Posits beat floats at their own game: superior 

accuracy, dynamic range, closure 

• Bitwise-reproducible answers (at last!) 

• Proven better answers with same number of bits 

• …or, equally good answers with fewer bits 

• Simpler, more elegant design can reduce silicon 
cost, energy, and latency. 

Who will produce the first posit arithmetic chip? 


