Beating Floating Point at its Own Game: Posit Arithmetic

John L. Gustafson Professor, A\*STAR and National University of Singapore



Supercomputing Frontiers 2017

#### Why worry about floating point? Find the scalar product $a \cdot b$ :

$$a = (3.2e8, 1, -1, 8.0e7)$$
  
 $b = (4.0e7, 1, -1, -1.6e8)$ 

**Note:** All values are integers that can be expressed *exactly* in the IEEE 754 Standard floating-point format (single or double precision)

Single Precision, 32 bits:  $a \cdot h = 0$ Double Precision, 64 bits:

Correct answer:

$$a \cdot b = 0$$

 $a \cdot b = 2$ 

**Most** linear algebra is unstable with floats!

#### What's wrong with IEEE 754? A start:

- No guarantee of identical results across systems
- It's a guideline, not a standard
- Breaks the laws of algebra:

 $a+(b+c) \neq (a+b)+c$   $a\cdot (b+c) \neq a \cdot b + a \cdot c$ 

• Overflow to infinity, or underflow to zero, create an infinite loss of accuracy.

#### IEEE floats are weapons of math destruction.

#### What else is wrong with IEEE 754?

- Exponents usually take too many bits
- Accuracy is flat across a vast range, then falls off a cliff
- Subnormal numbers are a headache ("gradual underflow")
- Divides are messy and slow
- Wasted bit patterns: "negative zero," too many NaN values

Do we really need 9,007,199,254,740,990 ways to say something is *Not a Number*??

#### **Contrasting Calculation "Esthetics"**

IEEE Standard (1985)

Type 1 Unums (2013)

Type 2 Unums (2016)

Type 3 Unums (2017) Rounded: cheap, uncertain, "good enough"

> Floats,  $f = n \times 2^m$ m, n are integers

"Guess" mode, flexible word size

"Guess" mode, fixed word size

**Posits** 

Rigorous: more work, certain, mathematical

Intervals  $[f_1, f_2]$ , all x such that  $f_1 \le x \le f_2$ 

Unums, ubounds, sets of uboxes

Sets of Real Numbers (SORNs)

Valids

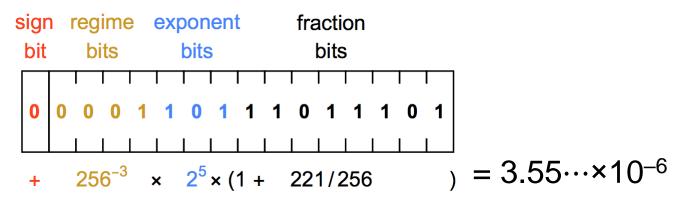
If you *mix* the two esthetics, you end up satisfying *neither*.

#### posit | 'päzət |

#### noun Philosophy

a statement that is made on the assumption that it will prove to be true.

# Metrics for Number Systems


- Decimals of Accuracy  $-\log_{10}(\log_{10}(x_i/x_{i+1}))$
- Dynamic range log<sub>10</sub>(maxreal / minreal)
- Percentage of operations that are *exact* (closure under  $+ \times \div \sqrt{\text{etc.}}$ )
- Average accuracy loss when *inexact*
- Entropy per bit (maximize information)
- Accuracy benchmarks: simple formulas, linear equation solving, math kernels...

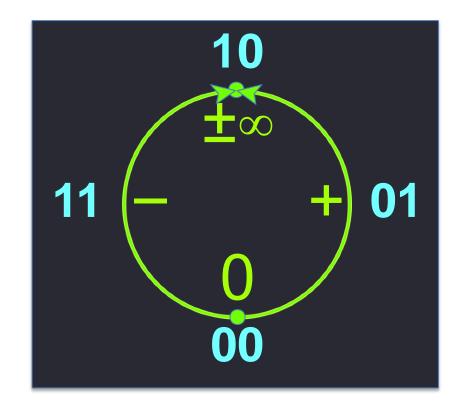
#### Posit Arithmetic: Beating floats at their own game

| sig | sign |      |   | regime |   |             |  |     |   | exponer |   |   |    |    |                |    |     | nt |   |   |    |            |                     |  | fr     | а          | cti | on     |            |      |   |  |   |   |   |   |   |   |   |  |
|-----|------|------|---|--------|---|-------------|--|-----|---|---------|---|---|----|----|----------------|----|-----|----|---|---|----|------------|---------------------|--|--------|------------|-----|--------|------------|------|---|--|---|---|---|---|---|---|---|--|
| b   |      | bits |   |        |   | bits, if ar |  |     |   |         |   |   |    | ny | y bits, if any |    |     |    |   |   |    |            |                     |  |        |            |     |        |            |      |   |  |   |   |   |   |   |   |   |  |
| S   | 5    | r    | r |        | r | r<br>r      |  | ••• | 1 | Т       | r | e | 21 | e  | T<br>2 6       | €3 | ••• | •  | Ι | e | es | <b>f</b> 1 | ا<br>f <sub>2</sub> |  | ר<br>ז | <i>f</i> 4 | f   | Т<br>5 | <b>f</b> 6 | •••• | T |  | T | T | 1 | Τ | T | T | 1 |  |
|     |      |      |   |        |   |             |  |     |   |         |   |   |    |    |                |    |     |    |   |   |    |            |                     |  |        |            |     |        |            |      |   |  |   |   |   |   |   |   |   |  |

Fixed size, *nbits*.
Note: The "ubit" is only for the *valid* type; posits round, if necessary. *es* = exponent size = 0, 1, 2,... bits.

#### **Posit Arithmetic Example**




Here, es = 3. Float-like circuitry is all that is needed (integer add, integer multiply, shifts to scale by  $2^k$ )

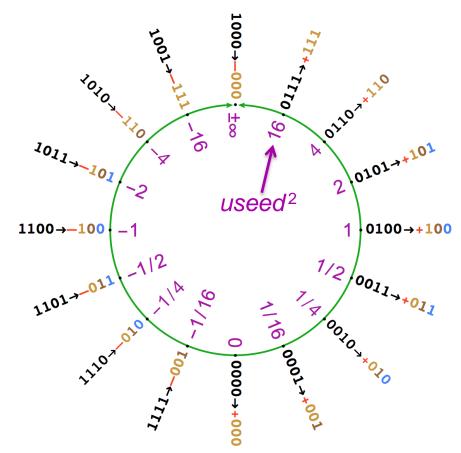
Posits do not underflow or overflow. There is no NaN.

Simpler, smaller, faster circuits than IEEE 754

## Posits use the Projective Reals

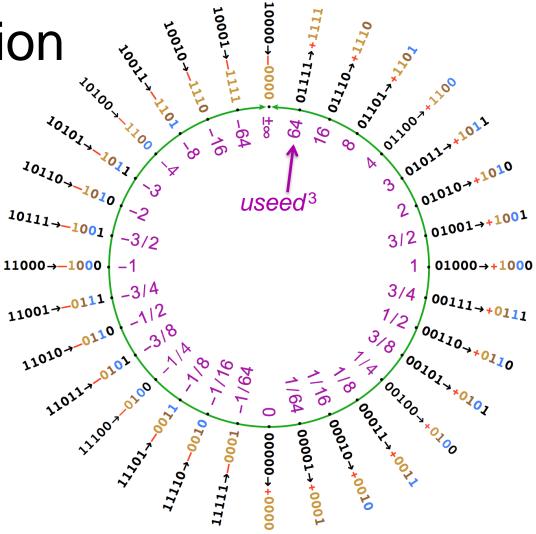
- Like Type 2 unums, posits map reals to standard *signed integers*.
- This eliminates "negative zero" and other IEEE float issues




#### Mapping to the Projective Reals Example with nbits = 3, es = 1.|+ 8 Value at 45° is always useed **110→1** useed = $2^{2^{es}}$ If bit string < 0, set sign to -00 and negate integer.

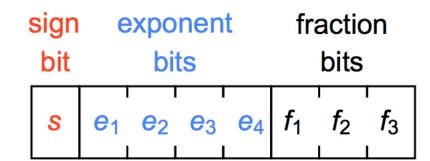
# Rules for inserting new points

Between ±*maxpos* and ±∞, scale up by *useed*. (New **regime** bit)


Between 0 and ±*minpos*, scale down by *useed.* (New **regime** bit)

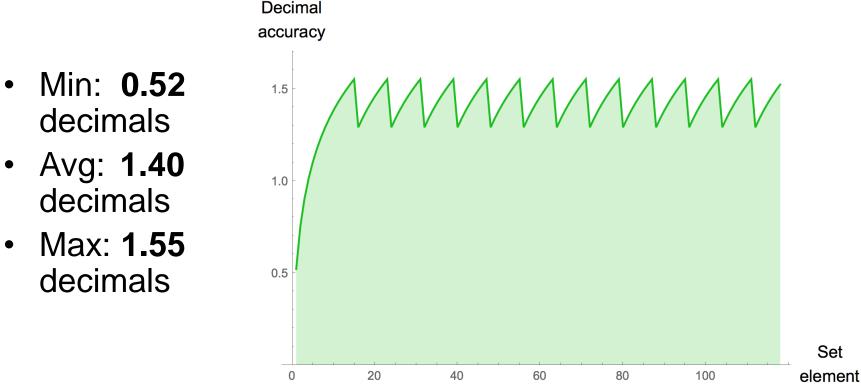
Between  $2^m$  and  $2^n$  where  $n - m \ge 2$ , insert  $2^{(m + n)/2}$ . (New **exponent** bit)




# At *nbits* = 5, fraction bits appear.

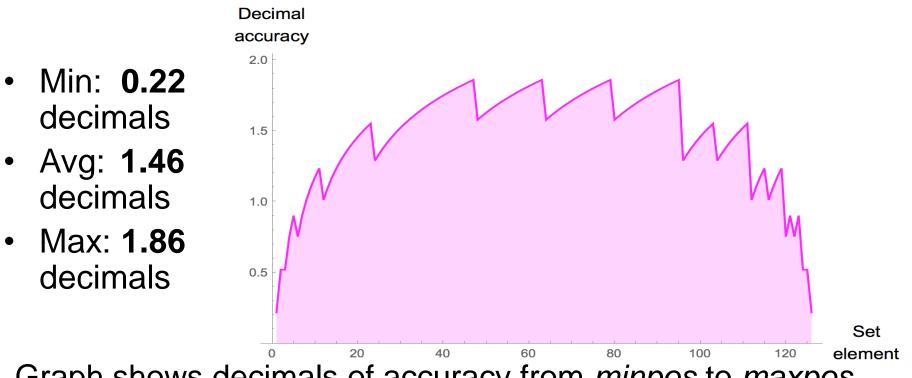
- Between x and y where  $y \le 2x$ , insert (x + y)/2.
- Existing values stay put as *trailing* bits are added.
- Appending bits increases *accuracy* east and west, *dynamic range* north and south!



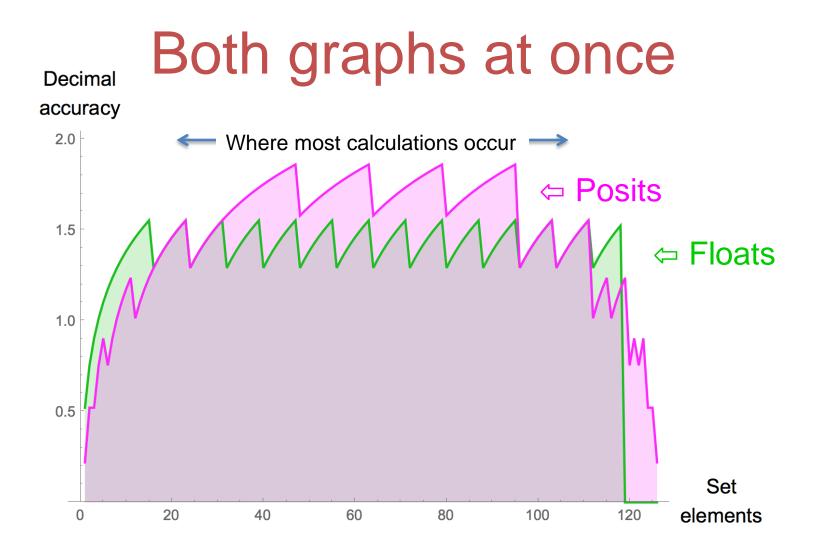

#### Posits v. Floats: a metrics-based study

- Compare *quarter-precision* IEEE-style floats
- Sign bit, 4 exponent bits, 3 fraction bits




- smallsubnormal = 1/512; maxfloat = 240.
- Dynamic range of five orders of magnitude
- Two bit patterns that mean zero
- Fourteen bit patterns that mean "Not a Number" (NaN)

#### Float accuracy tapers only on left




Graph shows decimals of accuracy from minfloat to maxfloat.

#### Posit accuracy tapers on both sides

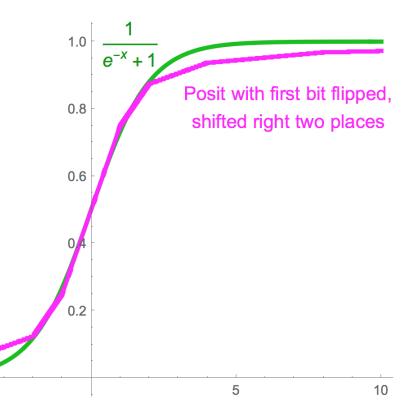


Graph shows decimals of accuracy from *minpos* to *maxpos*. But posits cover *seven* orders of magnitude, not five.



# Matching float dynamic ranges

| Size, bits | Float exponent size | Float dynamic range                             | Posit es | value | Posit dynamic range                             |
|------------|---------------------|-------------------------------------------------|----------|-------|-------------------------------------------------|
| 16         | 5                   | 6×10 <sup>-8</sup> to 7×10 <sup>4</sup>         | 1        |       | 4×10 <sup>-9</sup> to 3×10 <sup>8</sup>         |
| 32         | 8                   | 1×10 <sup>-45</sup> to 3×10 <sup>38</sup>       | 3        |       | 6×10 <sup>-73</sup> to 2×10 <sup>72</sup>       |
| 64         | 11                  | 5×10 <sup>-324</sup> to 2×10 <sup>308</sup>     | 4        |       | 2×10 <sup>-299</sup> to 4×10 <sup>298</sup>     |
| 128        | 15                  | 6×10 <sup>-4966</sup> to 1×10 <sup>4932</sup>   | 7        |       | 1×10 <sup>-4855</sup> to 1×10 <sup>4855</sup>   |
| 256        | 19                  | 2×10 <sup>-78984</sup> to 2×10 <sup>78913</sup> | 10       |       | 2×10 <sup>-78297</sup> to 5×10 <sup>78296</sup> |

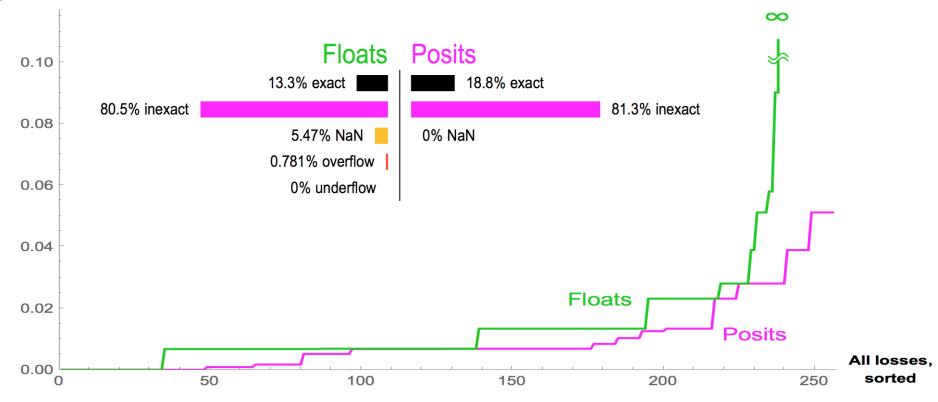

**Note**: Isaac Yonemoto has shown that 8-bit posits suffice for neural networks, with es = 0

## 8-bit posits speed neural nets

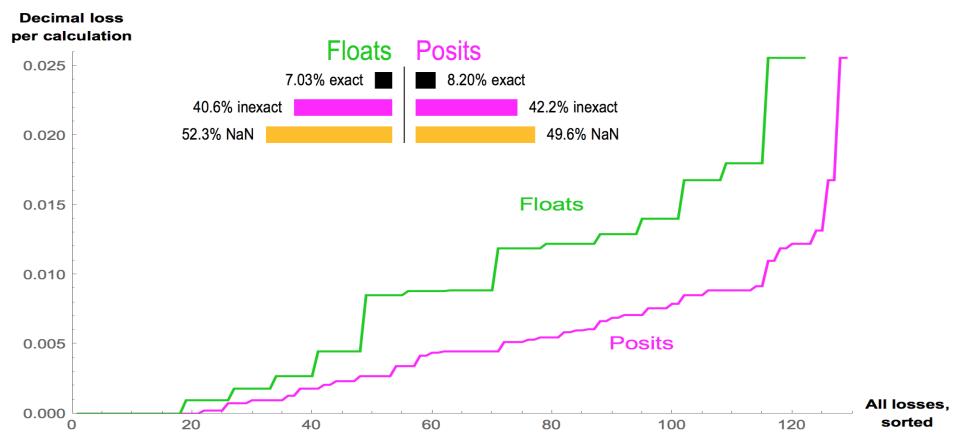
-5

Sigmoid functions take 1 cycle in posits, vs. dozens of cycles with float math libraries.

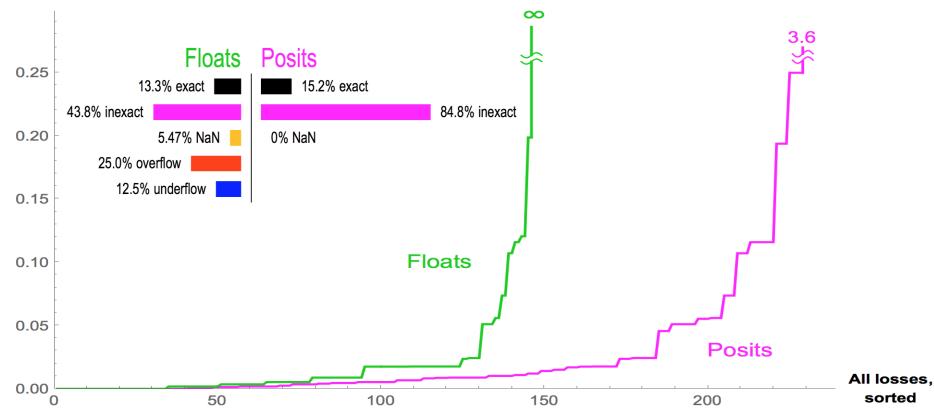
-10



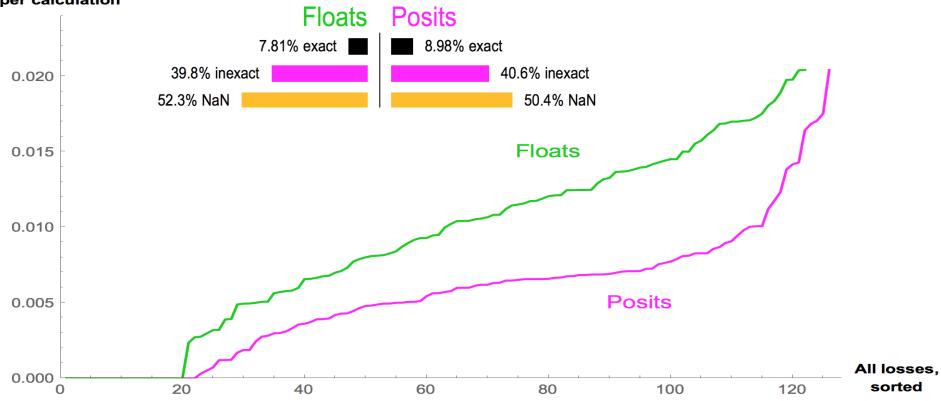

(Observation by I. Yonemoto)


# ROUND 1 "

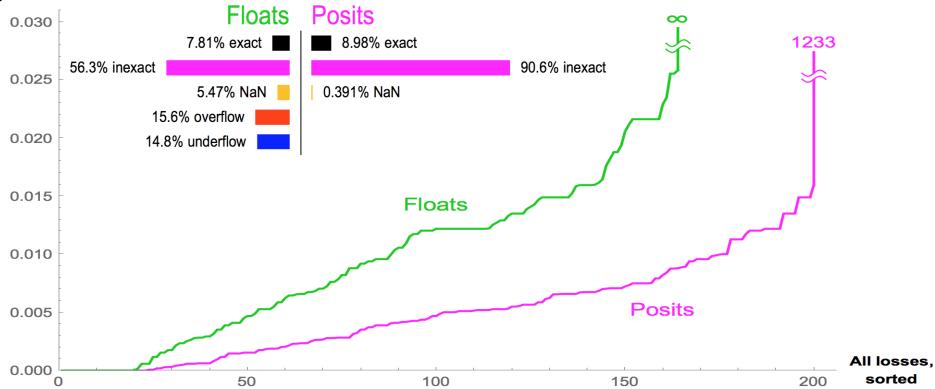
# 1/x, $\sqrt{x}$ , $x^2$ , $\log_2(x)$ , $2^x$


#### Closure under Reciprocation, 1/x




# Closure under Square Root, $\sqrt{x}$




#### Closure under Squaring, $x^2$



## Closure under $log_2(x)$

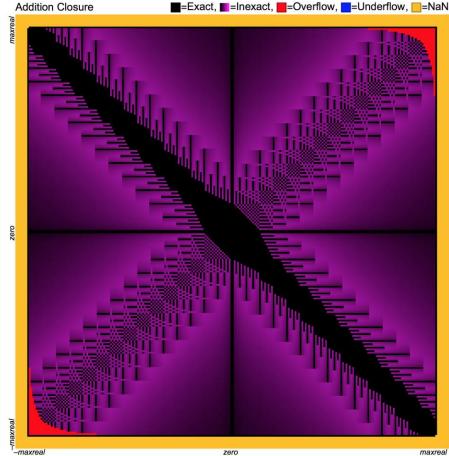


#### Closure under 2<sup>x</sup>





#### **Two-Argument Operations**


 $x + y, x \times y, x \div y$ 

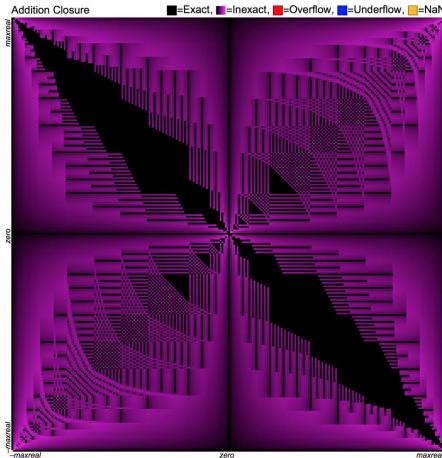
#### **Addition Closure Plot: Floats**

| 18.533% | exact     |
|---------|-----------|
| 70.190% | inexact   |
| 0.000%  | underflow |
| 0.635%  | overflow  |
| 10.641% | NaN       |

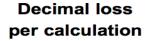
Inexact results are magenta; the larger the error, the brighter the color.

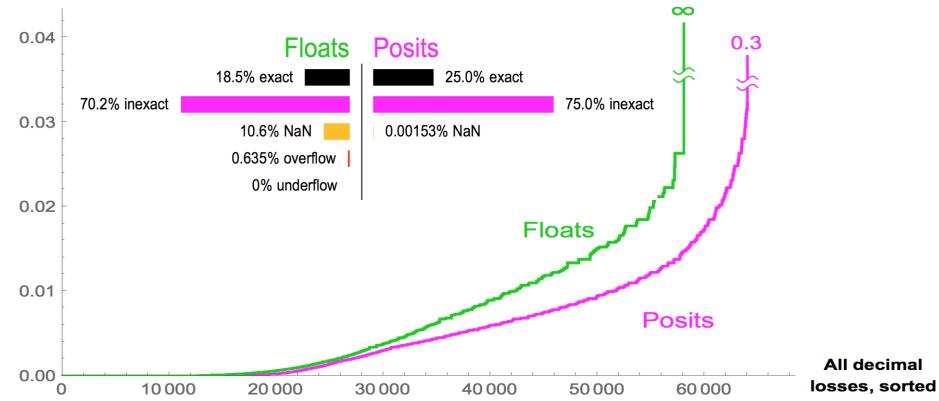
Addition can overflow, but cannot underflow.




#### **Addition Closure Plot: Posits**

| 25.005% | exact     |
|---------|-----------|
| 74.994% | inexact   |
| 0.000%  | underflow |
| 0.000%  | overflow  |
| 0.002%  | NaN       |


Only one case is a NaN:


 $\pm \infty + \pm \infty$ 

With posits, a NaN always stops the calculation. (Valids handle NaNs as sets.)



#### All decimal losses, sorted





#### **Multiplication Closure Plot: Floats**

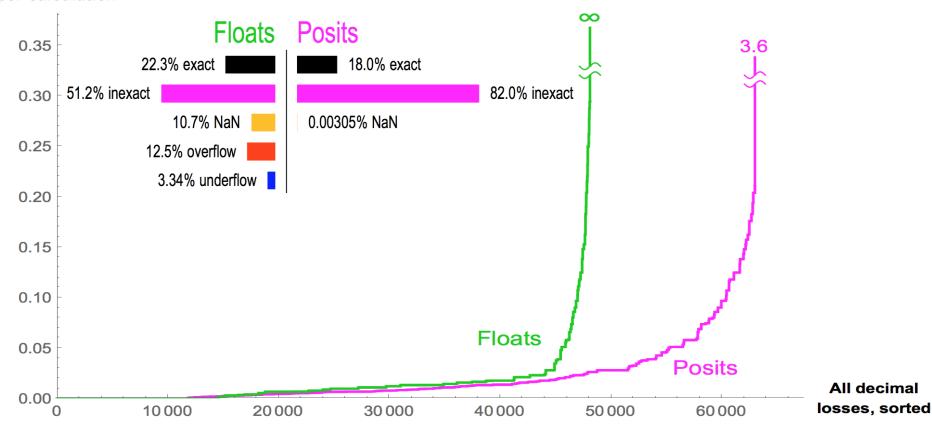
| 22.272% | exact     |
|---------|-----------|
| 58.279% | inexact   |
| 2.475%  | underflow |
| 6.323%  | overflow  |
| 10.651% | NaN       |

Floats score their first win: more exact products than posits...

#### but at a terrible cost!

|       |    |    |   |    |    |               |    | 1  |    |    |             | 1  | 1 | 10.1 |   |     |    | 100 | 100 | 100 | -  |    |    |    |    |    |            |    |
|-------|----|----|---|----|----|---------------|----|----|----|----|-------------|----|---|------|---|-----|----|-----|-----|-----|----|----|----|----|----|----|------------|----|
|       |    |    |   |    |    | 1             | 6  |    | -  |    |             |    | 1 |      |   |     | 1  |     |     |     |    |    | ι. |    |    |    |            |    |
|       |    |    |   |    | 4  |               | -  |    |    |    |             |    |   |      |   | 1   |    |     |     |     |    |    |    | L. |    |    |            |    |
|       |    |    |   | Å  | 1  |               | 2  |    | -  |    |             |    |   |      |   |     | 1  |     |     | ÷.  | ÷. |    |    |    | k. |    |            |    |
|       |    |    | 1 | 1  |    |               | 1  |    |    |    |             |    |   |      |   |     |    |     | ÷.  |     | ÷. |    |    |    |    | κ. |            |    |
|       |    | 4  | 0 | 0  | 0  |               | 0  | 0  | 0  |    | 0           | 0  | 0 |      |   | 5   |    | \$  | -   | 2   | 0  | -  | -  | -  | -  | -  | <b>b</b> . |    |
|       | A  | 0  | 0 | 0  | 0  |               | 0  | 0  | 0  | 6  | 0           | 0  | 0 |      |   | 1   | 1  | 2   | 9   | 2   | 2  | 0  | 9  | 6  | 9  | 5  | -          | ١. |
| 1     |    | 0  | 0 | 0  | 0  | 0             | 0  | 0  | 0  | 2  | 0           | 0  | 2 |      |   | 2   | 12 | 2   | 3   | 2   | 2  | 2  | 2  | 2  | 2  | 2  | -          |    |
| 10    |    | e. |   | 0  |    | 0             |    | 2  | e. | 2  | 2           | \$ | 1 | 3    | 1 |     | 2  | 9   |     | 2   |    | 9  |    | 9  |    | 9  | -          |    |
|       |    | e. |   |    |    |               |    |    |    |    |             |    |   |      |   |     |    |     |     |     |    |    |    | 2  |    | 9  |            |    |
| 1     |    |    |   |    |    |               |    |    |    |    |             |    | 1 |      |   | N   |    |     |     |     |    |    |    |    |    |    |            |    |
| 12    |    | Q. |   |    |    | e.            |    | Q. | ¢. |    |             | 2  |   |      |   |     | N  |     |     | 2   |    |    |    | 3  |    | 9  | 12         |    |
| se.   |    | e. |   | Ø. |    | $\mathcal{O}$ |    | ¢. | 13 |    | 2           | 1  |   |      |   |     |    | N   |     |     | 9  | 9  |    | 9  |    | 9  | 3          |    |
| 0     | Q. | Q. | 0 | Q. | Q. | 0             | 0  |    |    | 2  | 1           |    |   |      |   |     |    |     | S   |     |    | 9  | 9  | 9  | 9  | 9  | 2          |    |
|       |    |    |   |    |    |               | 1  |    |    |    |             |    |   |      |   |     |    |     |     |     |    | 2  |    |    |    |    |            |    |
|       |    |    |   |    |    | -             |    | 6  |    |    | <b>8</b> 6. |    |   |      |   |     |    |     | Z   | 10  | 3  | ÷  |    |    |    |    |            |    |
|       | -  | -  | - | -  | 4  | 1             | 2  |    |    | 83 | 3           |    |   |      |   |     |    | ľ,  | 6   |     | 4  | С. | ά. | С. | θ. | 0  | 1          |    |
|       | 1  | 1  | 1 | 1  | 2  | 1             | 2  | 2  | 1  |    | 5           | 3  |   |      |   |     | 1. | ĺ,  |     |     | 0  | 2  |    | 2  | 2  | 2  |            |    |
|       | 10 | 1  |   | 2  | 2  |               | 10 | 2  |    |    |             | 3  | 3 | b.   |   | ſ,  | 11 | 1   |     | ÷.  | 2  | 2  | 2  | 2  | 2  | 2  |            | Ľ  |
| -     | -  | -  | - | -  |    | -             | -  | 2  | -  | 1  |             |    | 2 |      |   | l,  |    | -   | 2   | 2   | 2  | 2  | 2  | 2  | 2  | 2  |            | Ľ  |
| -     |    |    | - | 10 | 20 | -             | 10 | -  | -  | -  | -           |    |   |      |   | i., | ÷  |     | ÷.  |     | -  | ÷  | -  | -  |    | -  |            | Ľ  |
|       | -  | -  | 1 | 1  | 1  |               | 1  | -  | -  |    | -           | -  |   |      |   | 1   | Č. |     |     |     |    | 1  |    |    |    |    |            | ŀ  |
|       | ÷  |    |   | 1  | 1  |               | 1  |    |    |    |             |    |   | ÷    |   |     |    |     |     |     |    |    |    |    |    |    |            | ŀ  |
|       |    | ÷  |   | 1  | 1  |               | 1  |    |    |    |             |    |   |      |   |     | i. | ÷.  | Č.  | ÷.  |    | ÷. |    |    | 1  | i. |            | ľ  |
|       |    |    | 1 |    | 1  | 1             | 1  |    |    |    |             |    |   |      |   | 1   |    | 2   |     |     |    | 1  |    | 1  | 1  | 7  | r,         |    |
|       |    |    |   | Ń  | 5  | 1             | 1  | 5  |    |    |             | 5  | 1 |      |   | 10  | 10 | 10  | 10  | 10  | 10 | 10 | 10 | 10 | Z  | ٢. |            |    |
|       |    |    |   |    | N  |               | 5  |    | 1  |    |             | 5  | 5 |      |   |     | 10 | 4   | 3   | 3   |    | 5  | 5  | Z  |    |    |            |    |
|       |    |    |   |    |    |               |    |    |    |    |             |    |   |      |   | 10  |    |     |     |     |    |    |    |    |    |    |            |    |
| axrea |    |    |   |    |    |               |    |    |    |    |             |    |   |      |   |     |    |     |     | -   |    | 2  |    |    |    |    |            |    |

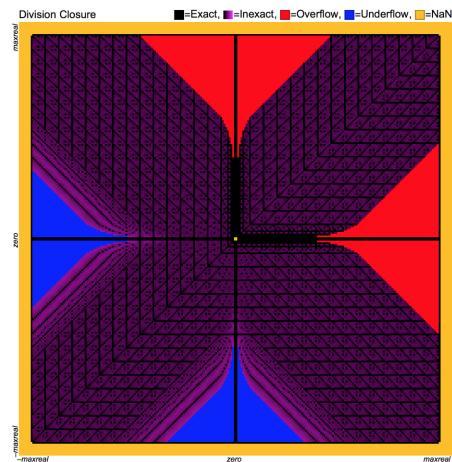
#### **Multiplication Closure Plot: Posits**


| 18.002% | exact     |
|---------|-----------|
| 81.995% | inexact   |
| 0.000%  | underflow |
| 0.000%  | overflow  |
| 0.003%  | NaN       |

Only two cases produce a NaN:

$$t = \infty \times 0$$
$$0 \times t = \infty$$

| Multiplication Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =Exact, <b>=</b> =Inexact, | =Overflow, | =Underflow, <mark>  </mark> =NaN |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|----------------------------------|
| maxreal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |            |                                  |
| #8243 (2) (2) (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |                                  |
| Service Se |                            |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12/1 188                   | 20         |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |                                  |
| -maxee/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |            |                                  |
| –maxreal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | zero                       |            | maxreal                          |


#### The sorted losses tell the real story

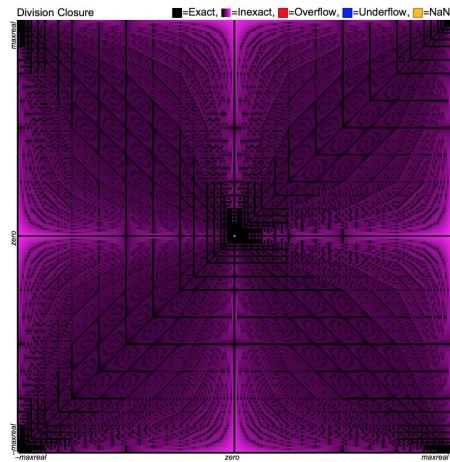


#### **Division Closure Plot: Floats**

| 22.272% | exact     |
|---------|-----------|
| 58.810% | inexact   |
| 3.433%  | underflow |
| 4.834%  | overflow  |
| 10.651% | NaN       |

Like multiplication, but with less symmetry.




#### **Division Closure Plot: Posits**

| 18.002% | exact     |
|---------|-----------|
| 81.995% | inexact   |
| 0.000%  | underflow |
| 0.000%  | overflow  |
| 0.003%  | NaN       |

Posits do not have denormalized values. Nor do they need them.

#### Hidden bit = 1,

always. Simplifies hardware.





#### **Higher-Precision Operations**

32-bit formula evaluation 128-bit triangle area calculation LINPACK solved with... 16 bits!

#### Accuracy on a 32-Bit Budget

Compute:

$$\left(\frac{27/10-e}{\rho-\left(\sqrt{2}+\sqrt{3}\right)}\right)^{67/16}$$

= 302.88271961/4

# with $\leq$ 32 bits per number.

| Number<br>Type      | Dynamic<br>Range    | Answer                                       | Error or Range         |
|---------------------|---------------------|----------------------------------------------|------------------------|
| IEEE 32-bit float   | 2×10 <sup>83</sup>  | 302. <mark>912</mark> …                      | 0.0297…                |
| Interval arithmetic | 10 <sup>12</sup>    | [18.21875, 33056.]                           | 3.3···×10 <sup>4</sup> |
| Type 1 unums        | 4×10 <sup>83</sup>  | (302. <mark>75</mark> , 30 <mark>3</mark> .) | 0.25                   |
| Type 2 unums        | 10 <sup>99</sup>    | 302.88 <mark>7</mark> …                      | 0.0038…                |
| Posits, $es = 3$    | 3×10 <sup>144</sup> | 302.882 <mark>31</mark> …                    | 0.00040                |
| Posits, $es = 1$    | 10 <sup>36</sup>    | 302.8827 <mark>819</mark> …                  | 0.000062…              |

#### Posits beat floats at both dynamic range and accuracy.

# Thin Triangle Area

Find the area of this thin triangle

 $b = 7/2 + 3 \times 2^{-111}$   $c = 7/2 + 3 \times 2^{-111}$ 

a = 7

using the formula 
$$s = \frac{a+b+c}{2}$$
;  $A = \sqrt{s(s-a)(s-b)(s-c)}$ 

and 128-bit IEEE floats, then 128-bit posits.

# Answer, correct to 36 decimals: 3.14784204874900425235885265494550774····×10<sup>-16</sup>

From "What Every Computer Scientist Should Know About Floating-Point Arithmetic," David Goldberg, published in the March, 1991 issue of *Computing Surveys* 

## A Grossly Unfair Contest

IEEE quad-precision floats get only one digit right:

3.63481490842332134725920516158057683····×10<sup>-16</sup>

128-bit posits get **36** digits right:

 $3.14784204874900425235885265494550774 \cdots \times 10^{-16}$ 

To get this accurate an answer with IEEE floats, you need the *octuple* precision (256-bit) format.

Posits don't even need 128 bits. They can get a very accurate answer with only *119* bits.

#### LINPACK: Ax = b 16-bit posits versus 16-bit floats

- 100 by 100; random A<sub>ii</sub> entries in (0, 1)
- *b* chosen so *x* should be all 1s exactly
- Classic LINPACK method: LU factorization with partial pivoting. Allow refinement using residual.

#### **IEEE 16-bit Floats**

Dynamic range: 10<sup>12</sup> Maximum error: 0.011 Decimal accuracy: 1.96

#### **16-bit Posits**

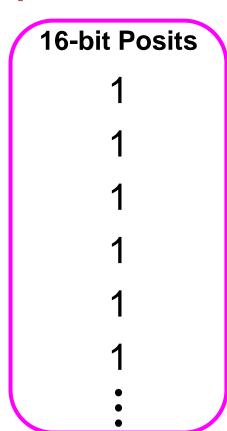
Dynamic range: 10<sup>16</sup> Maximum error: NONE Decimal accuracy: ∞

Note: work funded in part by DARPA under contract BAA 16-39

#### 64-bit Float versus 16-bit posit

#### **64-bit IEEE Floats**

1.000000000000124344978758017532527446746826171875


0.99999999999999837907438404727145098149776458740234375

1.00000000000193178806284777238033711910247802734375

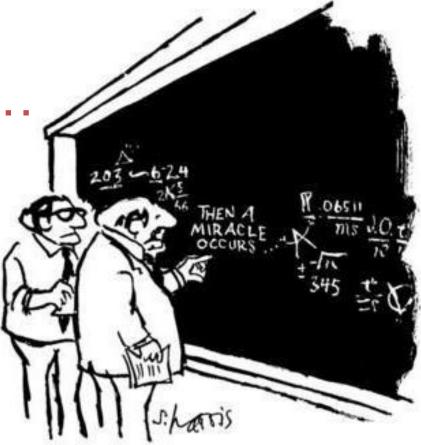
0.99999999999998501198916756038670428097248077392578125

0.9999999999999911182158029987476766109466552734375

0.99999999999999999900079927783735911361873149871826171875



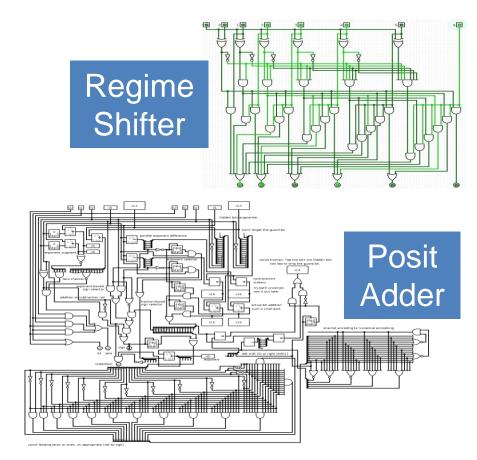
**Remember this from the beginning?** Find the scalar product *a* · *b*:


Posit answer:  $a \cdot b = 2$  (correct)

IEEE floats require 128-bit precision to get it right. Posits (*es* = 3) need only 25-bit precision to get it right. *Fused dot product* is 3–6 times **faster** than the float method.\*

\* "Hardware Accelerator for Exact Dot Product," David Biancolin and Jack Koenig, ASPIRE Laboratory, UC Berkeley

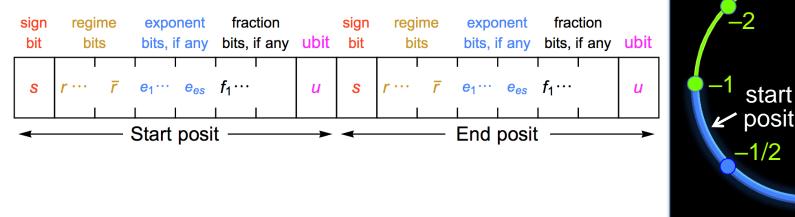
# Type 1, 2 unum hardware challenges...


- Type 1 unums need variable size; require unpacked form for simple indexing
- Type 2 unums need table look-up; only scale to about 20 bits
- But: Posits and Valids are ready to go **now**!



"I think you should be more explicit here in step two."

#### Building posit chips: The race is on


- Like IEEE floats, but simpler and less area (!)
- Multiplier, adder designs are done
- REX Computing, and a handful of startups are working on it; Intel is showing interest
- Looks ideal for GPUs; more arithmetic per chip



# Posit pairs beat *intervals* at their own game, too: Valid mode

end posit

1/2



*"Posit" mode*: Round unum if operation yields an inexact. *"Valid" mode*: Rigorous bounds; "NaN" answers are *sets* 

# 32-bit precision may suffice now!

- Early computers used **36-bit** floats.
- IBM System 360 went to 32-bit.
- It wasn't quite enough.
- What if 32-bit posits could replace 64-bit floats for structural analysis, circuit simulation, etc.?
- Potential 2x shortcut to exascale. Or more.





## Summary

- Posits beat floats at their own game: superior accuracy, dynamic range, closure
- Bitwise-reproducible answers (at last!)
- Proven *better answers* with same number of bits
- ...or, equally good answers with *fewer* bits
- Simpler, more elegant design can reduce silicon cost, energy, and latency.

#### Who will produce the first posit arithmetic chip?