
Beating Floating Point

at its Own Game:

Posit Arithmetic

John L. Gustafson

Professor, A*STAR and

National University of Singapore

Supercomputing Frontiers 2017

Why worry about floating point?

a = (3.2e8, 1, –1, 8.0e7)

b = (4.0e7, 1, –1, –1.6e8)

Single Precision, 32 bits:

Note: All values are integers that can be expressed exactly in the

IEEE 754 Standard floating-point format (single or double precision)

Double Precision, 64 bits:

a ∙ b = 0

a ∙ b = 0

Correct answer: a ∙ b = 2

Most linear

algebra is

unstable with

floats!

Find the scalar product a ∙ b:

What’s wrong with IEEE 754? A start:

• No guarantee of identical results across systems

• It’s a guideline, not a standard

• Breaks the laws of algebra:

a + (b + c) ≠ (a + b) + c a∙(b + c) ≠ a∙b + a∙c

• Overflow to infinity, or underflow to zero, create an

infinite loss of accuracy.

IEEE floats are weapons of math destruction.

What else is wrong with IEEE 754?

• Exponents usually take too many bits

• Accuracy is flat across a vast range, then falls off a cliff

• Subnormal numbers are a headache (“gradual underflow”)

• Divides are messy and slow

• Wasted bit patterns: “negative zero,” too many NaN values

Do we really need 9,007,199,254,740,990 ways

to say something is Not a Number??

Contrasting Calculation “Esthetics”

IEEE Standard

(1985)

Floats, f = n × 2m

m, n are integers

Intervals [f1, f2], all

x such that f1 ≤ x ≤ f2

Type 1 Unums

(2013)

“Guess” mode,

flexible word size

Unums, ubounds,

sets of uboxes

Type 2 Unums

(2016)

“Guess” mode, fixed

word size

Sets of Real Numbers

(SORNs)

Type 3 Unums

(2017)
Posits Valids

Rounded: cheap,

uncertain, “good enough”

Rigorous: more work,

certain, mathematical

If you mix the two esthetics, you end up satisfying neither.

Metrics for Number Systems

• Decimals of Accuracy –log10(log10(xj / xj+1))

• Dynamic range log10(maxreal / minreal)

• Percentage of operations that are exact

(closure under + – × ÷ √ etc.)

• Average accuracy loss when inexact

• Entropy per bit (maximize information)

• Accuracy benchmarks: simple formulas, linear

equation solving, math kernels…

Posit Arithmetic:

Beating floats at their own game

Fixed size, nbits.

Note: The “ubit” is only for the valid type;

 posits round, if necessary.

es = exponent size = 0, 1, 2,… bits.

Posit Arithmetic Example

Here, es = 3. Float-like circuitry is all that is needed

(integer add, integer multiply, shifts to scale by 2k)

Posits do not underflow or overflow. There is no NaN.

Simpler, smaller, faster circuits than IEEE 754

= 3.55⋯×10–6

Posits use the Projective Reals

• Like Type 2 unums,

posits map reals to

standard signed

integers.

• This eliminates

“negative zero” and

other IEEE float issues 00

01

10

11

±∞

0

+ –

Example with

nbits = 3, es = 1.

Value at 45° is always

If bit string < 0, set sign to –

and negate integer.

useed

useed = 2
es 2

Mapping to the Projective Reals

Rules for inserting new points
Between ±maxpos and ±∞,

scale up by useed.

(New regime bit)

Between 0 and ±minpos,

scale down by useed.

(New regime bit)

Between 2m and 2n where

n – m ≥ 2, insert 2(m + n)/2.

(New exponent bit)

useed
2

At nbits = 5, fraction

bits appear.

Between x and y where

y ≤ 2x, insert (x + y)/2.

Existing values stay put as

trailing bits are added.

Appending bits increases

accuracy east and west,

dynamic range

north and south!

useed
3

Posits v. Floats: a metrics-based study
• Compare quarter-precision

IEEE-style floats

• Sign bit, 4 exponent bits,

3 fraction bits

• smallsubnormal = 1/512; maxfloat = 240.

• Dynamic range of five orders of magnitude

• Two bit patterns that mean zero

• Fourteen bit patterns that mean “Not a Number” (NaN)

Float accuracy tapers only on left

• Min: 0.52
decimals

• Avg: 1.40
decimals

• Max: 1.55
decimals

Graph shows decimals of accuracy from minfloat to maxfloat.

Posit accuracy tapers on both sides

• Min: 0.22
decimals

• Avg: 1.46
decimals

• Max: 1.86
decimals

Graph shows decimals of accuracy from minpos to maxpos.

But posits cover seven orders of magnitude, not five.

Both graphs at once

⇦ Posits

⇦ Floats

Where most calculations occur

Matching float dynamic ranges

Note: Isaac Yonemoto has shown that 8-bit posits

suffice for neural networks, with es = 0

8-bit posits speed neural nets

Sigmoid functions take

1 cycle in posits, vs.

dozens of cycles with

float math libraries.

(Observation by I. Yonemoto)

ROUND 1

Unary Operations

1/x, √x, x2, log2(x), 2x

Closure under Reciprocation, 1/x

Closure under Square Root, √x

Closure under Squaring, x2

Closure under log2(x)

Closure under 2x

ROUND 2

Two-Argument Operations

x + y, x × y, x ÷ y

Addition Closure Plot: Floats
18.533% exact

70.190% inexact

 0.000% underflow

 0.635% overflow

10.641% NaN

Inexact results are magenta;

the larger the error, the

brighter the color.

Addition can overflow, but

cannot underflow.

Addition Closure Plot: Posits
25.005% exact

74.994% inexact

 0.000% underflow

 0.000% overflow

 0.002% NaN

Only one case is a NaN:

±∞ + ±∞

With posits, a NaN always

stops the calculation. (Valids

handle NaNs as sets.)

All decimal losses, sorted

Multiplication Closure Plot: Floats
22.272% exact

58.279% inexact

 2.475% underflow

 6.323% overflow

10.651% NaN

Floats score their first win:

more exact products than

posits…

but at a terrible cost!

Multiplication Closure Plot: Posits
18.002% exact

81.995% inexact

 0.000% underflow

 0.000% overflow

 0.003% NaN

Only two cases

produce a NaN:

±∞ × 0

0 × ±∞

The sorted losses tell the real story

Division Closure Plot: Floats

22.272% exact

58.810% inexact

 3.433% underflow

 4.834% overflow

10.651% NaN

Like multiplication, but

with less symmetry.

Division Closure Plot: Posits
18.002% exact

81.995% inexact

 0.000% underflow

 0.000% overflow

 0.003% NaN

Posits do not have

denormalized values. Nor do

they need them.

Hidden bit = 1,

always. Simplifies hardware.

ROUND 3

Higher-Precision Operations

32-bit formula evaluation

128-bit triangle area calculation

LINPACK solved with… 16 bits!

Accuracy on a 32-Bit Budget
27 /10 - e

p - 2 + 3()

æ

è

ç
ç

ö

ø

÷
÷

67 /16

= 302.8827196¼Compute:
with ≤ 32 bits

per number.

Number

Type

Dynamic

Range

Answer Error or Range

IEEE 32-bit float 2×1083 302.912⋯ 0.0297⋯

Interval arithmetic 1012 [18.21875, 33056.] 3.3⋯×104

Type 1 unums 4×1083 (302.75, 303.) 0.25

Type 2 unums 1099 302.887⋯ 0.0038⋯

Posits, es = 3 3×10144 302.88231⋯ 0.00040⋯

Posits, es = 1 1036 302.8827819⋯ 0.000062⋯

Posits beat floats at both dynamic range and accuracy.

Thin Triangle Area

From “What Every Computer Scientist Should Know About Floating-Point Arithmetic,”

David Goldberg, published in the March, 1991 issue of Computing Surveys

Find the area of this thin triangle

using the formula

and 128-bit IEEE floats, then 128-bit posits.

Answer, correct to 36 decimals:

3.14784204874900425235885265494550774⋯×10–16

A Grossly Unfair Contest
IEEE quad-precision floats get only one digit right:

To get this accurate an answer with IEEE floats, you

need the octuple precision (256-bit) format.

Posits don’t even need 128 bits. They can get a very

accurate answer with only 119 bits.

3.63481490842332134725920516158057683⋯×10–16

128-bit posits get 36 digits right:

3.14784204874900425235885265494550774⋯×10–16

LINPACK: Ax = b
16-bit posits versus 16-bit floats

• 100 by 100; random Aij entries in (0, 1)

• b chosen so x should be all 1s exactly

• Classic LINPACK method: LU factorization with partial
pivoting. Allow refinement using residual.

IEEE 16-bit Floats

Dynamic range: 1012

Maximum error: 0.011

Decimal accuracy: 1.96

16-bit Posits

Dynamic range: 1016

Maximum error: NONE

Decimal accuracy: ∞

Note: work funded in part by DARPA under contract BAA 16-39

64-bit Float versus 16-bit posit
16-bit Posits

1

1

1

1

1

1

64-bit IEEE Floats

1.0000000000000124344978758017532527446746826171875

0.9999999999999837907438404727145098149776458740234375

1.0000000000000193178806284777238033711910247802734375

0.99999999999998501198916756038670428097248077392578125

0.9999999999999911182158029987476766109466552734375

0.99999999999999900079927783735911361873149871826171875

⋮ ⋮

Remember this from the beginning?

a = (3.2e8, 1, –1, 8.0e7)

b = (4.0e7, 1, –1, –1.6e8)

Posit answer: a ∙ b = 2 (correct)

Find the scalar product a ∙ b:

IEEE floats require 128-bit precision to get it right.

Posits (es = 3) need only 25-bit precision to get it right.

Fused dot product is 3–6 times faster than the float method.*

* “Hardware Accelerator for Exact Dot Product,”

David Biancolin and Jack Koenig, ASPIRE Laboratory, UC Berkeley

• Type 1 unums need
variable size; require
unpacked form for
simple indexing

• Type 2 unums need
table look-up; only
scale to about 20 bits

• But: Posits and Valids
are ready to go now!

Type 1, 2 unum

hardware challenges…

Building posit chips: The race is on

• Like IEEE floats, but
simpler and less area (!)

• Multiplier, adder designs
are done

• REX Computing, and a
handful of startups are
working on it; Intel is
showing interest

• Looks ideal for GPUs;
more arithmetic per chip

Regime

Shifter

Posit

Adder

Posit pairs beat intervals at their
own game, too: Valid mode

“Posit” mode: Round unum if operation yields an inexact.

“Valid” mode: Rigorous bounds; “NaN” answers are sets

±∞

0

1 –1

1/2

2 –2

–1/2

start
posit

end
posit

32-bit precision may suffice now!
• Early computers used 36-bit floats.

• IBM System 360 went to 32-bit.

• It wasn’t quite enough.

• What if 32-bit posits could replace
64-bit floats for structural analysis,
circuit simulation, etc.?

• Potential 2x shortcut to exascale.
Or more.

Summary
• Posits beat floats at their own game: superior

accuracy, dynamic range, closure

• Bitwise-reproducible answers (at last!)

• Proven better answers with same number of bits

• …or, equally good answers with fewer bits

• Simpler, more elegant design can reduce silicon
cost, energy, and latency.

Who will produce the first posit arithmetic chip?

