
Sunway TaihuLight:
Designing and Tuning Scientific Applications

at the Scale of 10-Million Cores

Haohuan Fu

National Supercomputing Center in Wuxi

Department of Earth System Science, Tsinghua University

March 14th 2017 @ SCF

The Sunway Machine

The Programming Model

Scaling Over 10-Million Cores: A Climate Example

Outline

Sunway TaihuLight

太 湖 之 光

神威

Sunway TaihuLight

City Rank in Top100

Shanghai 1

Suzhou 7

Wuxi 14

Nantong 24

Changzhou 34

Jiaxing 50

Sunway-I:

- CMA service, 1998

- commercial chip

- 0.384 Tflops

- 48th of TOP500

Sunway BlueLight:

- NSCC-Jinan, 2011

- 16-core processor

- 1 Pflops

- 14th of TOP500

Sunway TaihuLight:

- NSCC-Wuxi, 2016

- 260-core processor

- 125 Pflops

- 1st of TOP500

The Sunway Machine Family

Entire System

Peak Performance 125 PFlops

Linpack Performance 93 PFlops

Total Memory 1310.72 TB

Total Memory Bandwidth 5591.45 TB/s

nodes 40,960

cores 10,649,600

Sunway TaihuLight: Overview

Each Node

Peak Performance 3.06 TFlops

Memory 32 GB

Memory Bandwidth 136.5 GB/s

CPU 1

cores 260

Sunway TaihuLight: Overview

 260 cores per processor

 4 Core Groups (CGs), each of which has:

 1 Management Processing Element (MPE)

 64 (8x8) Computing Processing Elements (CPEs)

Core Group 2

Data Transfer

Network

MPE
8*8 CPE

Mesh

PPU

iMC

Memory

Core Group 0

MPE
8*8 CPE

Mesh

iMC

PPU

Memory

Core Group 1

MPE
8*8 CPE

Mesh

PPU

Core Group 3 iMC

Memory

MPE
8*8 CPE

Mesh

PPU

iMC

Memory

NoC

Computing

Core

LDM

Column

Communication Bus

Control

Network

Registers

Row

Communication

Bus

Transfer Agent (TA)

Memory Level

LDM Level

Register Level

Computing Level

8*8 CPE Mesh

SW26010: Sunway 260-Core Processor

 A Five-Level Integration Hierarchy

 computing node

 computing board

 super node

 cabinet

 entire computing system

High-Density Integration of the Computing System

 A Five-Level Integration Hierarchy

 computing node

 computing board

 super node

 cabinet

 entire

computing

system

High-Density Integration of the Computing System

 A Five-Level Integration Hierarchy

 computing node

 computing board

 super node

 cabinet

 entire

computing

system

High-Density Integration of the Computing System

 A Five-Level Integration Hierarchy

 computing node

 computing board

 super node

 cabinet

 entire

computing

system

High-Density Integration of the Computing System

 A Five-Level Integration Hierarchy

 computing node

 computing board

 super node

 cabinet

 entire

computing

system

High-Density Integration of the Computing System

How to Connect the 10 Million Cores?

How to Connect the 10 Million Cores?

2D core array
with row and
column buses

How to Connect the 10 Million Cores?

2D core array with row
and column buses

Network on Chip

How to Connect the 10 Million Cores?

2D core array with row
and column buses

Network on Chip

Customized Network Board to
Fully Connect 256 Nodes

How to Connect the 10 Million Cores?

2D core array with row
and column buses

Network on Chip

Customized Network Board to
Fully Connect 256 Nodes

Sunway Net

System TaihuLight Tianhe-2 Titan Sequoia Cori

Peak Performance (PFlops) 125.4 54.9 27.1 20.1 27.9

Total Memory (TB) 1310 1024 710 1572 879

Linpack Performance (PFlops) 93.0(74%) 33.9(62%) 17.6(65%) 17.2(85.3) 14.0(50%)

Rank of Top500 1 2 3 4 5

Performance/Power (Mflops/W) 6051.3 1901.5 2142.8 2176.6 3266.8

Rank of Green500 4 135 100 90 26

GTEPS 23755.7 2061.48 ### 23751 ###

Rank of Graph500 2 8 ### 3 ###

HPCG (Pflops) 0.3712 0.5801 0.3223 0.3304 0.3554

Rank of HPCG 4 2 7 6 5

Sunway TaihuLight V.S. Other Systems

19

Tweet Comments from Prof. Satoshi Matsuoka

Tweet Comments from Prof. Satoshi Matsuoka

Tweet Comments from Prof. Satoshi Matsuoka

Tweet Comments from Prof. Satoshi Matsuoka

The Sunway Machine

The Programming Model

Scaling Over 10-Million Cores: A Climate Example

Outline

 MPI
 One MPI process runs on one management core (MPE)

 Sunway OpenACC
 Sunway OpenACC conducts data transfer between main memory and local data

memory (LDM), and distributes the kernel workload to the computing cores (CPEs)

 Athread
 Athread is the threading library to manage threads on computing core (CPE), which is

used in the Sunway OpenACC implementation

Programming Model on TaihuLight

MPI + X
X: (Sunway OpenACC / Athread)

 Sunway OpenACC is a directive-based programming tool for SW26010

 OpenACC2.0 based

 Extensions for the architecture of SW26010

 Supported by SWACC/SWAFORT compiler

 Source-to-Source compiler

 Based on ROSE compiler infrastructure (0.9.6a)

 An open Source compiler infrastructure to build source-to-source program transformation and analysis

 Developed by LLNL

Brief Overview of Sunway OpenACC

Brief View of Sunway OpenACC compiler

CPE Code

MPE Code

int A[1024][1024];
intB[1024][1024];
intC[1024][1024];
#pragma acc parallel loop \
copyin(B, C) copyout(A)
for(i = 0; i < 1024; i ++) {

for(j = 0; j < 1024; j ++) {
A[i][j] = B[i][j] + C[i][j];

 }
}

…

CPEs_swpan(CPE_kernel, args);
…

__SPM_localint SPM_A[1][1024];
__SPM_localint SPM_B[1][1024];
__SPM_localint SPM_C[1][1024];
void
CPE_kernel(args) {
for(i=CPE_id; i < 1024; i +=CPE_num) {

dma_get(&B[i][0], SPM_B, 4096);
dma_get(&C[i][0], SPM_C, 4096);
for(j = 0; j < 1024; j ++) {
SPM_A[0][j] = SPM_B[0][j] + SPM_C[0][j];
} //j-loop
dma_put(SPM_A, &A[i][0], 4096);

 } //i-loop
}

SWACC

Source Code with
Sunway OpenACC
directives

Basic
Compiler

a.out

Compute pattern: data into SPM -> calculation -> data out to Main memory
Workload distribution and the size for data transfer are automatically determined by compiler

The difference between the Memory Models

Host Memory

Device Memory

Host

Device

The memory that Accelerator
threads can be accessed

OpenACC

Host Memory MPE

S P M …
…

SW26010

CPEs

Data Moving
is executed by
host thread

Data movement
is initiated by
each CPE thread

The memory that Accelerator
threads can be accessed

 Extend the usage of data environment directives

 Use data copy inside the accelerator parallel region

 copy on parallel perform data moving and distributing between LDMs

 Add new directives/clauses

 local clause, to allocate space on LDM of CPE thread.

 Data transform support to speedup data transfer

 pack/packin/packout clause

 swap/swapin/swapout clause

 annotate clauses to better controls of data movement and execution from compiler

 tilemask, entire, co_compute

The Principal Extension of Sunway OpenACC

Directly data transfer between MEM and LDM

 Use data copy to handle data moving between Mem and LDM

 !$acc parallel loop

 do i=1,128
 m = func(i)
 !$acc data copyin(A(*, m)) copyout(B(*, i))

 do j=1,128
 B(j, i) = A(j, m)
 enddo
 !$acc end data

 enddo
 !$acc end parallel loop

OpenACC2.0 Sunway OpenACC

 Moving A, B between host memory

and device memory (e.g. global

memory on GPU)

 Executed by host thread

 Moving A(*, m)、B(*, i) between host

memory and LDM in each i-loop

 Executed by each CPE thread

 !$acc data copyin(A) copyout(B)

 !$acc parallel loop

 do i=1,128
 m = func(i)
 do j=1,128
 B(j, i) = A(j, m)
 enddo
 enddo
 !$acc end parallel loop

 !$acc end data

Distributed moving data between MEM and LDMs

 Use copy clause of parallel to move and distribute data between

Mem and LDMs

OpenACC2.0 Sunway OpenACC

 Moving A、B between host

memory and device memory

 Executed by host thread

 Moving A(*, i)、B(*, i)、C(*, i) between host

memory and LDM in each i-loop

 Executed by each slave thread on CPE

 Data distribution controlled by compiler

 For readonly arrays with small size，can use

copyin(arr) annotate(entire(arr)) to specify that the

arr will be put totally into LDM of Each CPE

!$acc parallel loop copyout(C) copyin(A, B)

do i = 1, 256
 do j = 1, 512
 C(j, i) = A(j, i) + B(j, i)
 end do
 end do
!$acc end parallel loop

Control the size of data moved to LDM

 Use tile clause to control the granularity of data moved to LDM

 Add tilemask for better data transfer

tile:

 allocate buffer(256, 2, 1) in each LDM for A、B、C.

 same size of data being moved to each LDM each round.

 two loops on j is assigned to each CPE thread.

!$acc parallel loop copyin(A, B) copyout(C)

do i = 1, 64
 !$acc loop tile(2)

 do j = 1, 128
 do k = 1, 256
 C(k, j, i) = A(k, j, i) + B(k, j, i)
 end do
 end do !end of j-loop
 !$acc end loop

end do ! end of i-loop
!$acc end parallel loop

!$acc parallel loop copy(C) copyin(A, B)

do i=1,128
 !$acc loop tile(1) annotate(tilemask(C))

 do k=1,128
 do j=1,128
 C(k, i) = C(k, i) + A(j, i) * B(k, j)
 enddo
 enddo
 !$acc end loop

enddo
!$acc end parallel loop

 Tilemask(var-list) means the tile will not affect the

variables in var-list.

 Move more data in one transfer.

 Buffer_C(1,1) will be allocated in LDM without tilemask.

 Buffer_C(128, 1) will be allocated with tilemask.

Local and private data management

 Add local clause to allocate LDM space for private data

 Use private+copy to manage private data with large size

 Usage: local(var-list)

 Variables in var-list are private for CPE thread, and will be placed in LDM.

 Used for private variables with small size.

!$acc parallel loop copyin(A, B) copyout(C)

!$acc& private(tmp) copy(tmp)

do i = 1, 64
 !$acc loop tile(2)

 do j = 1, 128
 do k = 1, 256
 tmp(k, j) = A(k, j, i) + B(k, j, i)
 end do
 … … ! some compute on tmp(*,*)
 do k = 1, 256
 C(k, j, i) = tmp(k, j)
 end do
 end do end do ! end of j-loop
 !$acc end loop

end do ! end of i-loop
!$acc end parallel loop

 Array with large size can not be put into LDM.

 Step 1: private(var-list), private vars will be

allocated in private space of each CPE in Main

Memory.

 Step 2: copy(the-same-var-list), the private data

will be copied into LDM, piece-by-piece.

 Buffer_tmp(256, 2) will be allocated and

maintained in LDM.

 pack clause

 pack/packin/packout

 pack = dataPack + copy

 pack multiple variables into a new variable

by MPE, and copy data between MEM and

SPM with the new one by CPE .

 Most useful for multiple scalars.

Packing data to improve transfer efficiency

!$acc parallel loop copyout(D) packin(A, B, C)

do i = 1, 64
 do j = 1, 32
 D(j, i) = C(j, i) + A(j, i) + B(j, i)
 end do
 end do
!$acc end parallel loop

A(32, 64)
B(32, 64)
C(32, 64)

pkin_data(3,32,64) dataPack

 D(j, i) = pkin_data(3, j, i) +
 pkin_data(2, j, i)+pakin_data(1, j, i)

Transposing array to improve transfer efficiency

 swap clause

 swap/swapin/swapout

 swap = ArrayTranspose + copy

 Improve the space-locality and the

data transmission efficiency to avoid

repeated stride copy

 Use CPE threads to perform array

transpose for better bandwidth

utilization.

 Efficient transpose algorithm , can

support 6-dim array.

!$acc parallel loop copyout(A) copyin(C)

!$acc& swapin(B(dimension order:2, 3, 1))

do i = 1, 64
do j = 1, 32
do k = 1, 128
 A(k, j, i) = C(k, j, i) + B(i, k, j)
enddo
enddo
enddo
!$acc end parallel loop

B(64,128,32) B’(128,32,64)
Transposed

use Accelerator

 A(k, j, i) = C(k, j, i) + B’(k, j, i)

 Cooperative computing

 Treat the host thread the same as device thread

 N device threads, 1 host thread

 N+1 threads execute the parallel loop

 Add co_compute clause

 Used on loop directive

 annotate(co_compute)

Other Extensions

 #pragma acc parallel copyout(A)

 {

 #pragma acc loop annotate(co_compute)

 for(i = 0; i < 130; i++)

 {

 A[i] = i;

 }

 }

Threading
library to
manage
threads on
CPEs

Similar to
posix
Pthreads

Athread
Routine Functionality

int athread_init() Initialize the athread library

int athread_create(int id,
start_routine fpc, void *arg)

Start a routine with id executing the function pointed by
fpc, the parameters for the function fpc are pointed by arg

int athread_wait(int id) Wait for the completion of the thread ID

int athread_end(int id) Terminate the thread by specifying thread ID

int
athread_spawn(start_routine
fpc, void *arg)

Spawn a set of threads making use of all CPEs

int
athread_get_max_threads()

Get the maximum number of active threads

int athread_get_id() Get the ID of current threads

….

Athread example

MPE code CPE code

The Sunway Machine

The Programming Model

Scaling Over 10-Million Cores: A Climate Example

Outline

atmosphere
model

More and more component models

atmosphere
model

More and more component models

ocean
model

ocean-
atmosphere

boundary

atmosphere
model

More and more component models

ocean
model

ocean-
atmosphere

boundary

ice model land model

ocean-ice
boundary

land-atmosphere
boundary

ice-land
boundary

atmosphere
model

More and more component models

ocean
model

ocean-
atmosphere

boundary

ice model land model

ocean-ice
boundary

land-atmosphere
boundary

ice-land
boundary

coupler

marine
biology

dynamic ice

ocean
model

ice model

coupler

land model

hydrological
process

land
biology

atmospheric
chemistry

atmosphere
model

space
weather

solid earth

ocean-ice
boundary

land-atmosphere
boundary

ice-land
boundary

ocean-
atmosphere

boundary

More and more component models

Increase in Spatial and Temporal Resolution to
be Cloud-Resolving and Eddy-Resolving

Simulation of Cloud
Droplet Formation

Simulation of more and more detailed physics processes

Simulation of Cloud
Droplet Formation

Online
Ensembles

10240
NICAM

Samples on K
computer

Courtesy of Takemasa Miyoshi’s talk at

BDEC 2017, Wuxi.

The Gap between Software and Hardware

49

China’s supercomputers
• heterogeneous systems with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or thousands of cores

100T

• millions lines of legacy code
• poor scalability
• written for multi-core, rather than many-core

100P

Our Research Goals

50

China’s supercomputers
• heterogeneous systems with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or thousands of cores

100T

• millions lines of legacy code
• poor scalability
• written for multi-core, rather than many-core

100P
• highly scalable framework that can efficiently utilize many-core processors
• automated tools to deal with the legacy code

Our Research Goals

51

China’s supercomputers
• heterogeneous systems with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or thousands of cores

100T

• millions lines of legacy code
• poor scalability
• written for multi-core, rather than many-core

100P
• highly scalable framework that can efficiently utilize many-core processors
• automated tools to deal with the legacy code

Highly-Scalable Atmospheric Simulation Framework

52

The “Best” Computational Solution

Architecture

Algorithm
Application

cloud resolving

explicit, implicit, or
semi-implicit method

cube-sphere grid or
other grid

Sunway, GPU, MIC, FPGA

C/C++, Fortran, MPI, CUDA,
Java, …

Wang, Lanning
Beijing Normal University
climate modeling

Yang, Chao
Institute of Software, CAS
computational mathematics

Xue, Wei
Tsinghua University
computer science

Fu, Haohuan
Tsinghua University
geo-computing

 Starting from shallow wave equation
 cubed-sphere mesh grid
 adjustable partition between CPU and GPU
 scale to 40,000 CPU cores and 3750 GPUs with a sustainable performance of

800 TFlops

2012: 2D SWE Solver on Tianhe-1A

53
“A Peta-Scalable CPU-GPU Algorithm for Global Atmospheric Simulations”, in Proceedings of the 18th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP), pp. 1-12, Shenzhen, 2013. .

2013: 3D Euler Equation Solver on Tianhe-2

54

A Sustained
Performance of
1.7 Pflops

“Ultra-scalable CPU-MIC Acceleration of Mesoscale Atmospheric Modeling on Tianhe-2”, IEEE Transaction on Computers.

 Customized mixed-preicion fully-pipelined hardware design

 100x speedup over 6-core CPU, 5x speedup over GPU

2013: 2D SWE Solver on FPGA

55

ROM

index

input

FPGA

±

±
*

±

±
*

float(11,53)

fixed(?,38)

fixed(?,38)

float(8,32)

float(8,32)

float(11,53)

float(8,32)

output

Reconstruction

Rianan and stencil

float(11,53)

“Accelerating Solvers for Global Atmospheric Equations Through Mixed-Precision Data Flow Engine”, in Proceedings of the

23rd International Conference on Field Programmable Logic and Applications, 2013.

 Customized mixed-preicion fully-pipelined hardware design

 100x speedup over 6-core CPU, 5x speedup over GPU

2013: 2D SWE Solver on FPGA

56

ROM

index

input

FPGA

±

±
*

±

±
*

float(11,53)

fixed(?,38)

fixed(?,38)

float(8,32)

float(8,32)

float(11,53)

float(8,32)

output

Reconstruction

Rianan and stencil

float(11,53)

“Accelerating Solvers for Global Atmospheric Equations Through Mixed-Precision Data Flow Engine”, in Proceedings of the

23rd International Conference on Field Programmable Logic and Applications, 2013.

Selected as one of the 27
Significant Papers of FPL in 25
Years (27 out of 1765)

racks chips core-groups cores total number of cores

163,840 processes 65 threads

DD-MG K-cycle

V
e
ry

 s
h
a
ll
o
w

Uniform DD

Plug & Play

Now let’s find a
way to design a
subdomain solver.

racks chips core-groups cores total number of cores

163,840 processes 65 threads

Parallel ILU with level-scheduling DD-MG K-cycle

Two issues:

1. Data locality

2. Global synchronization

0 1

2 3 4

6 7 8

5

9

Level 0

Level 1

Level 2

racks chips core-groups cores total number of cores

163,840 processes 65 threads

Async. parallel ILU of [Chow et al. SISC’15] DD-MG K-cycle

Two issues:

1. Multiple sweeps needed

2. Global synchronization

racks chips core-groups cores total number of cores

163,840 processes 65 threads

Geometry-based pipelined ILU (GP-ILU)

Y
X

Z

8×8 8×8

8×8

8×8

Two-level pipeline

blk_height

Synchronization avoiding

11

 dim_zblk_height1num_cores
cell_size

reg_size

DD-MG K-cycle

Subdomain matrix
of 1st-order with
geometric index

Our goal of design:

1. Single sweep

2. Synchronization-free

3. Improved data-locality

The 3-km res run: 1.01 SYPD with 10.6M cores, dt=240s, I/O penalty <5%

Strong-scaling results

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M
0%

20%

40%

60%

80%

100%

Total number of cores

P
a

ra
ll

e
l
e

ff
ic

ie
n

c
y

33% (GB’15)

67%

45%

0.00125

0.0025

0.005

0.01

0.02

0.04

0.08

0.16

0.33 M 1.33 M 5.32 M2.66 M 10.64 M

0.488

34X

SY
P

D

Total number of cores

 Implicit

 Explicit

89.5X

2.480 1.389 0.920 0.620
Resolution (km)

0.67 M

Weak-scaling results

7.95 DP-PF

23.66 DP-PF

DOFs=772B

“Exa-scale”
 for exp

The 488-m res run: 0.07 SYPD, 10.6M cores, dt=240s, 89.5X speedup over explicit

Our Research Goals

63

China’s supercomputers
• heterogeneous systems with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or thousands of cores

100T

• millions lines of legacy code
• poor scalability
• written for multi-core, rather than many-core

100P
• highly scalable framework that can efficiently utilize many-core processors
• automated tools to deal with the legacy code

The CESM Project on Sunway TaihuLight

64

CAM5.0 POP2.0

CLM4.0 CICE4.0

CPL7

CESM1.2.0

Tsinghua + BNU 30+ Professors and Students

• Four component models, millions lines of code
• Large-scale run on Sunway TaihuLight

• 24,000 MPI processes
• Over one million cores

• 10-20x speedup for kernels
• 2-3x speedup for the entire model

“Refactoring and Optimizing the Community Atmosphere Model (CAM) on the Sunway TaihuLight Supercomputer”, in

Proceedings of SC 2016.

a high complexity in application, and a heavy legacy in the
code base (millions lines of code)

an extremely complicated MPMD program with no
hotspots (or hundreds of hotspots)

misfit between the in-place design philosophy and the
new architecture

lack of people with interdisciplinary knowledge and
experience

Major Challenges

CAM initial Dyn_run Phy_run1 Phy_run2

Pass state variables Pass state variables and tracers

Pass tracers (u, v) to dynamics

Workflow of CAM

After initialization, the physics and the dynamics are executed in turn during each
simulation time-step.

 Entire code base: 530, 000 lines of code

 Components with regular code patterns
 e.g. the CAM-SE dynamic core

 manual OpenACC parallelization and optimization on code and data structures

 Components with irregular and complex code patterns
 e.g. the CAM physics schemes

 loop transformation tool to expose the right level of parallelism and code size

 memory footprint analysis and reduction tool

Porting of CAM: General Idea

Euler_step:

do ie = nets, nete
 compute Q min/max values for lim8
 compute Biharmonic mixing term f
end do

do ie = nets, nete
 2D advection step
 data packing
end do

Bonundary exchange

Data extracting

do ie = nets, nete
 do k = 1, nlev
 dp(k) = func_1()
 do q = 1, qsize
 Qtens(k,q,ie) = func_2(dp(k))
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 ….
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 dp0 = func_3()
 dpdiss = func_4()
 do q = 1, qsize
 Qtens(k,q,ie) = func_5(dp0, dpdiss)
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 dp(k) = func_5()
 Vstar(k) = func_6()
 end do

 do q = 1, qsize
 do k = 1, nlev
 Qtens(k,q,ie) = func_7(dp(k), Vstar(k))
 end do

 do k = 1, nlev
 dp_star(k) = func_8(dp(k))
 end do

 do k = 1, nlev
 Qtens(k,q,ie) = func_9(dp_star(k))
 end do
 end do
 Data packing
end do

1

2

Refactoring the Euler Step

do ie = nets, nete
 do k = 1, nlev
 dp(k) = func_1()
 do q = 1, qsize
 Qtens(k,q,ie) = func_2(dp(k))
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 ….
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 dp0 = func_3()
 dpdiss = func_4()
 do q = 1, qsize
 Qtens(k,q,ie) =
 func_5(dp0,
dpdiss)
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 dp(k) = func_5()
 Vstar(k) = func_6()
 end do

 do q = 1, qsize
 do k = 1, nlev
 Qtens(k,q,ie) =
 func_7(dp(k), Vstar(k))
 end do

 do k = 1, nlev
 dp_star(k) = func_8(dp(k))
 end do

 do k = 1, nlev
 Qtens(k,q,ie) =
 func_9(dp_star(k))
 end do
 end do
 Data packing
end do

optimized:

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 Qtens(k,q,ie) =
 func_2(func_1())
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 ….
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 Qtens(k,q,ie) =
 func_5(func_3(),func_4())
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 Qtens(k,q,ie) =
 func_7(func_5(),func_6())
 end do

 do k = 1, nlev
 Qtens(k,q,ie) =

func_9(func_8(func_5()))
 end do
 end do
 Data packing
end do

2
3

Refactoring the Euler Step

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 Qtens(k,q,ie) = …
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 Qtens(k,q,ie) = …
 end do
 end do
end do
Data packing

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 Qtens(k,q,ie) = …
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 Qtens(k,q,ie) = …
 end do
 end do
end do
Data packing

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-nets)
 do k = 1, nlev
 q = func(ie_q)
 ie = func(ie_q)
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 Qtens(k,q,ie) = …
 end do
end do

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-nets)
 do k = 1, nlev
 q = func(ie_q)
 ie = func(ie_q)
 Qtens(k,q,ie) = …
 end do
end do
!$ACC PARALLEL LOOP
Data packing

optimized:

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 Qtens(k,q,ie) =
 func_2(func_1())
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 qmin(k,q,ie) = …
 qmax(k,q,ie) = …
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 ….
 end do
 end do
end do

do ie = nets, nete
 do k = 1, nlev
 do q = 1, qsize
 Qtens(k,q,ie) =
 func_5(func_3(),func_4())
 end do
 end do
end do

do ie = nets, nete
 do q = 1, qsize
 do k = 1, nlev
 Qtens(k,q,ie) =
 func_7(func_5(),func_6())
 end do

 do k = 1, nlev
 Qtens(k,q,ie) =
 func_9(func_8(func_5()))
 end do
 end do
 Data packing
end do

3

4

5

6

Refactoring the Euler Step

column (col)
…

…

chunk

……

pver

Refactoring of the Physics Schemes

do begin_chunk to end_chunk
 tphysbc()
 {
 convect_deep_tend(6.47%)
 convect_shallow_tend(15.57%)
 macrop_driver_tend(8.38%)
 microp_aero_run(4.29%)
 microp_driver_tend(7.13%)
 aerosol_wet_intr(4.29%)
 convect_deep_tend_2(0.51%)
 radiation_tend(54.07%)
 }
enddo

tphysbc()
{
 do begin_chunk to end_chunk
 convect_deep_tend(6.47%)
 convect_shallow_tend(15.57%)
 macrop_driver_tend(8.38%)
 microp_aero_run(4.29%)
 microp_driver_tend(7.13%)
 aerosol_wet_intr(4.29%)
 convect_deep_tend_2(0.51%)
 radiation_tend(54.07%)
 enddo
}

tphysbc()
{
 do begin_chunk to end_chunk
 convect_deep_tend(6.47%)
 enddo
 ……
 do begin_chunk to end_chunk
 microp_driver_tend(7.13%)
 enddo
 ……
 do begin_chunk to end_chunk
 radiation_tend(54.07%)
 enddo
}

do begin_chunk to end_chunk
 convect_deep_tend(6.47%)
 {
 zm_conv_tend(6.47%)
 {
 zm_convr(2.03%)
 zm_conv_evap()
 montran()
 convtranc(0.06%)
 }
 }
enddo

convect_deep_tend(6.47%)
{
 zm_conv_tend(6.47%)
 {
 do begin_chunk to end_chunk
 zm_convr(2.03%)
 enddo
 do begin_chunk to end_chunk
 zm_conv_evap()
 enddo
 do begin_chunk to end_chunk
 montran()
 enddo
 do begin_chunk to end_chunk
 convtranc(0.06%)
 enddo
 }
}

1 2
3

4

5

Loop Transformation for Phys_run1

Variable Storage Space Analysis and Reduction Tool

• Estimate the storage requirements of the
variable and arrays

• Identify the lifespan of the variables and
arrays

• Determine whether the variables and arrays
of each CPE thread can fit into the 64KB SPM.

Basic functions

•The original Fortran function accesses 7
intermediate arrays (A to G) during the
computation process. By analyzing the lifespan of
these 7 arrays, which are annotated by the lines
above these arrays, we can determine that 4
arrays would provide sufficient space to store
these 7 arrays in different stages of the execution
process.

Example Explanation

Speedup of Major Kernels in CAM-SE

7x to 22x speedup for computing intensive kernels;
2x to 7x speedup for memory-bound kernels

Speedup of Major Kernels in CAM-PHY
The microp_mg1_0 kernel demonstrates a
significant speedup of 14x, as the intermediate
variables and arrays provide a nice fit to the
SPM of the CPE clusters after the automated
optimizations.

0.04
0.15

0.24 0.25

0.6

0.78
0.87

1.54

1.2

1.62

1.75

2.81

0

0.5

1

1.5

2

2.5

3

1024 2400 4096 5120 7350 9600 12000 24000

Si
m

ul
at

io
n	

Sp
ee

d	
(D

es
cr

ib
ed

	in
	M

od
el

	Y
ea

r	P
er

	D
ay

(M
YP

D
))

Number	of	CGs	(each	CG	includes	1	MPE	and	64	CPEs)

MPE	only MPE+CPE	for	dynamic	core MPE+CPE	for	both	dynamic	core	and	physics	schemes

CAM model: scalability and speedup

• million core scale, 2.81 SYPD
• many-core refactoring for the

entire model
• competitive simulation speed to

the same model on NCAR
Yellowstone

 swDNN: Provide interface for optimized basic operators

 Fully-connected layer (BLAS); Pooling layer

 Activation function; Batch Normalization

 *Convolutional Layer(90% time for CNN)

Library for Deep Learning (swDNN)

77

Work Platform Method

cuDNN(2014) GPU GEMM

fbtfft(2014) GPU FFT

Andrew Lavin (2015) GPU Winograd

Chen Zhang (2015) FPGA Direct Conv

swDNN SW26010 Blocking GEMM

Related Works on other architectures

 Performance

 Convolutional performance above 1.6 Tflops with double-precision

 Speedup ranging from 1.91x to 9.75x compared with cudnnv5.1.

Library for Deep Learning (swDNN)

78

 Distributed framework

 Customized from Caffe with less dependencies

 Two-level Parameter Server Based-on MPI

Framework for Deep Learning (under development)

79

Sever-Cache

Global-Server

Worker Worker Worker

Worker Worker Worker

Sever-Cache

Worker Worker Worker

Worker Worker Worker

…

swDNN Supported Project: Sunway-Lingo
 collaborated with Prof. Zhiqing Liu, BUPT

80

 Original go board to be processed

 Converted to a 48-channel image fed to deep CNN with essential go features such as
liberties

 Order of probabilities of plausible moves as outputted by policy network

 Traditional HPC Applications (Science -> Service)

 weather / climate service

 seismic data processing service

 CFD simulation framework for Advanced Manufacturing

 Deep Learning Related Applications

 the swDNN framework

 collaborating with face++ for face recognition applications

 collaborating with Sogou for voice recognition and translation

 customized DNN Sunway chip?

 Big Data Center

 National Health and Medical Big Data Center at Nanjing

Long Term Plan

81

