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Sunway TaihuLight 

City Rank in Top100 

Shanghai 1 

Suzhou 7 

Wuxi 14 

Nantong 24 

Changzhou 34 

Jiaxing 50 



Sunway-I: 

- CMA service, 1998 

- commercial chip 

- 0.384 Tflops 

- 48th of TOP500 

Sunway BlueLight: 

- NSCC-Jinan, 2011 

- 16-core processor 

- 1 Pflops 

- 14th of TOP500 

Sunway TaihuLight: 

- NSCC-Wuxi, 2016 

- 260-core processor 

- 125 Pflops 

- 1st of TOP500 

The Sunway Machine Family 



Entire System 

Peak Performance 125 PFlops 

Linpack Performance 93 PFlops 

Total Memory 1310.72 TB 

Total Memory Bandwidth 5591.45 TB/s 

# nodes 40,960 

# cores 10,649,600 

Sunway TaihuLight: Overview 



Each Node 

Peak Performance 3.06 TFlops 

Memory 32 GB 

Memory Bandwidth 136.5 GB/s 

# CPU 1 

# cores 260 

Sunway TaihuLight: Overview 

 260 cores per processor 

 4 Core Groups (CGs), each of which has: 

 1 Management Processing Element (MPE) 

 64 (8x8) Computing Processing Elements (CPEs) 
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SW26010: Sunway 260-Core Processor 



 A Five-Level Integration Hierarchy 

 computing node 

 computing board 

 super node 

 cabinet 

 entire computing system 

High-Density Integration of the Computing System 
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How to Connect the 10 Million Cores? 



How to Connect the 10 Million Cores? 

2D core array 
with row and 
column buses  



How to Connect the 10 Million Cores? 

2D core array with row 
and column buses  

Network on Chip 



How to Connect the 10 Million Cores? 

2D core array with row 
and column buses  

Network on Chip 

Customized Network Board to 
Fully Connect 256 Nodes 



How to Connect the 10 Million Cores? 

2D core array with row 
and column buses  

Network on Chip 

Customized Network Board to 
Fully Connect 256 Nodes 

Sunway Net 



System TaihuLight Tianhe-2 Titan Sequoia Cori 

Peak Performance (PFlops) 125.4 54.9 27.1 20.1 27.9 

Total Memory (TB) 1310 1024 710 1572 879 

Linpack Performance (PFlops) 93.0(74%) 33.9(62%)  17.6(65%) 17.2(85.3) 14.0(50%) 

Rank of Top500 1 2 3 4 5 

Performance/Power (Mflops/W) 6051.3 1901.5 2142.8 2176.6 3266.8 

Rank of Green500 4 135 100 90 26 

GTEPS 23755.7 2061.48 ### 23751 ### 

Rank of Graph500 2 8 ### 3 ### 

HPCG (Pflops) 0.3712 0.5801 0.3223 0.3304 0.3554 

Rank of HPCG 4 2 7 6 5 

Sunway TaihuLight V.S. Other Systems 

19 
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 MPI 
 One MPI process runs on one management core (MPE) 

 Sunway OpenACC 
 Sunway OpenACC  conducts data transfer between main memory and local data 

memory (LDM), and distributes the kernel workload to the  computing cores (CPEs) 

 Athread 
 Athread is the threading library to manage threads on computing core (CPE), which is 

used in the Sunway OpenACC implementation 

 

Programming Model on TaihuLight  

MPI + X 
X: (Sunway OpenACC / Athread) 



 Sunway OpenACC is a directive-based programming tool for SW26010  

 OpenACC2.0 based 

 Extensions for the architecture of SW26010 

 Supported by SWACC/SWAFORT compiler 

 Source-to-Source compiler 

 Based on ROSE compiler infrastructure (0.9.6a) 

 An open Source compiler infrastructure to build source-to-source program transformation and analysis 

 Developed by LLNL 

 

Brief Overview of Sunway OpenACC 



Brief View of Sunway OpenACC compiler 

CPE Code 

MPE Code 

int A[1024][1024]; 
intB[1024][1024]; 
intC[1024][1024]; 
#pragma acc parallel loop \ 
copyin(B, C) copyout(A) 
for(i = 0; i < 1024; i ++) { 

for(j = 0; j < 1024; j ++) { 
A[i][j] = B[i][j] + C[i][j]; 

  } 
} 

… 

CPEs_swpan(CPE_kernel, args); 
… 

__SPM_localint SPM_A[1][1024]; 
__SPM_localint SPM_B[1][1024]; 
__SPM_localint SPM_C[1][1024]; 
void 
CPE_kernel(args) { 
for(i=CPE_id; i < 1024; i +=CPE_num) { 

dma_get(&B[i][0], SPM_B, 4096); 
dma_get(&C[i][0], SPM_C, 4096); 
for(j = 0; j < 1024; j ++) { 
SPM_A[0][j] = SPM_B[0][j] + SPM_C[0][j]; 
} //j-loop 
dma_put(SPM_A, &A[i][0], 4096); 

  } //i-loop 
} 

SWACC 

Source Code with 
Sunway  OpenACC 
directives 

Basic 
Compiler 

a.out 

Compute pattern: data into SPM -> calculation -> data out to Main memory 
Workload distribution and the size for data transfer are automatically determined by compiler  



The difference between the Memory Models  

Host Memory 

Device Memory 

Host 

Device 

The memory that Accelerator  
threads can be accessed 

OpenACC 

Host Memory MPE 

S     P     M      … 
… 

SW26010 

CPEs 

Data Moving  
is executed by 
host thread 

Data movement  
is initiated by 
each CPE thread 

The memory that Accelerator  
threads can be accessed 



 Extend the usage of data environment directives 

 Use data copy inside the accelerator parallel region 

 copy on parallel  perform data moving and distributing between LDMs 

 Add new directives/clauses  

 local clause, to allocate space on LDM of CPE thread. 

 Data transform support to speedup data transfer 

 pack/packin/packout clause 

 swap/swapin/swapout clause 

 annotate clauses to better controls of data movement and execution from compiler 

 tilemask, entire, co_compute 

 

The Principal Extension of Sunway OpenACC 



Directly data transfer between MEM and LDM 

 Use data copy to handle data moving between Mem and LDM 

 

     !$acc parallel loop 

    do i=1,128 
        m = func(i) 
         !$acc data copyin(A(*, m)) copyout(B(*, i))  

        do j=1,128 
            B(j, i) = A(j, m)  
        enddo 
        !$acc end data 

    enddo 
    !$acc end parallel loop 

OpenACC2.0 Sunway OpenACC 

 Moving A, B between host memory 

and device memory (e.g. global 

memory on GPU) 

 Executed by host thread 

 

 Moving A(*, m)、B(*, i) between host 

memory and LDM in each i-loop 

 Executed by each CPE thread 

 

 !$acc data copyin(A) copyout(B) 

 !$acc parallel loop  

    do i=1,128 
        m = func(i) 
        do j=1,128 
            B(j, i) = A(j, m)  
        enddo 
    enddo 
    !$acc end parallel loop 

    !$acc end data 



Distributed moving data between MEM and LDMs 

 Use copy clause of parallel to move and distribute data between 

Mem and LDMs 

 

 

OpenACC2.0 Sunway OpenACC 

 Moving A、B between host 

memory and device memory 

 Executed by host thread 

 

 Moving A(*, i)、B(*, i)、C(*, i) between host 

memory and LDM in each i-loop 

 Executed by each slave thread on CPE 

 Data distribution controlled by compiler 

 For readonly arrays with small size，can use 

copyin(arr) annotate(entire(arr)) to specify that the 

arr will be put totally into LDM of Each CPE 

!$acc parallel loop copyout(C) copyin(A, B) 

do i = 1, 256 
  do j = 1, 512 
      C(j, i) =  A(j, i) + B(j, i) 
      end do 
  end do 
!$acc end parallel loop 



Control the size of data moved to LDM  

 Use tile clause to control the granularity of data moved to LDM 

 

 

 

 

 

 Add tilemask for better data transfer 

 

 

tile: 

 allocate  buffer(256, 2, 1) in each LDM for A、B、C. 

 same size of data being moved to each LDM each round. 

 two loops on j is assigned to each CPE thread. 

!$acc parallel loop copyin(A, B) copyout(C) 

do i = 1, 64 
   !$acc loop tile(2) 

   do j = 1, 128 
       do k = 1, 256 
            C(k, j, i) = A(k, j, i)  + B(k, j, i) 
        end do 
     end do  !end of j-loop 
     !$acc end loop 

end do  ! end of i-loop 
!$acc end parallel loop 

!$acc parallel loop copy(C) copyin(A, B)  

do i=1,128 
    !$acc loop  tile(1) annotate(tilemask(C)) 

    do k=1,128 
        do j=1,128 
           C(k, i) = C(k, i) + A(j, i) * B(k, j) 
        enddo 
    enddo 
    !$acc end loop 

enddo 
!$acc end parallel loop 

 Tilemask(var-list)  means the tile will not affect  the 

variables in var-list. 

 Move more data in one transfer. 

 Buffer_C(1,1) will be allocated in LDM without tilemask. 

 Buffer_C(128, 1) will be allocated with tilemask. 



Local and private data management 

 Add local clause to allocate LDM space for private data 

 

 

 Use private+copy to manage private data with large size 

 

 

 Usage: local(var-list) 

 Variables in var-list  are private for CPE thread, and will be placed in LDM. 

 Used for private variables with small size. 

!$acc     parallel loop copyin(A, B) copyout(C) 

!$acc&  private(tmp) copy(tmp) 

do i = 1, 64 
   !$acc loop tile(2) 

   do j = 1, 128 
       do k = 1, 256 
            tmp(k, j) = A(k, j, i)  + B(k, j, i) 
        end do 
         … …   ! some compute on tmp(*,*) 
         do k = 1, 256 
              C(k, j, i) = tmp(k, j) 
         end do 
     end do  end do    ! end of j-loop 
     !$acc end loop 

end do  ! end of i-loop 
!$acc end parallel loop 

 Array with large size can not be put into LDM. 

 Step 1: private(var-list),  private vars will be 

allocated in private space of each CPE in Main 

Memory. 

 Step 2: copy(the-same-var-list), the private data 

will be copied into LDM, piece-by-piece. 

 Buffer_tmp(256, 2) will be allocated and 

maintained in LDM.  



 pack clause 

 pack/packin/packout 

 pack = dataPack + copy 

 

 pack multiple variables into a new variable 

by MPE, and copy data between MEM and 

SPM with the new one by CPE . 

 

 Most useful for multiple scalars. 

 

Packing data to improve transfer efficiency 

!$acc parallel loop copyout(D) packin(A, B, C) 

do i = 1, 64 
  do j = 1, 32 
      D(j, i) =  C(j, i) + A(j, i) + B(j, i) 
      end do 
  end do 
!$acc end parallel loop 

A(32, 64) 
B(32, 64) 
C(32, 64)  

pkin_data(3,32,64)  dataPack 

 D(j, i) =  pkin_data(3, j, i) + 
 pkin_data(2, j, i)+pakin_data(1, j, i) 



Transposing array to improve transfer efficiency 

 swap clause 

 swap/swapin/swapout 

 swap = ArrayTranspose + copy 

 Improve the space-locality and the 

data transmission efficiency to avoid 

repeated stride copy 

 Use CPE threads to perform array 

transpose for better bandwidth 

utilization. 

 Efficient transpose algorithm , can 

support 6-dim array. 

 

 

!$acc     parallel loop copyout(A) copyin(C) 

!$acc&  swapin(B(dimension order:2, 3, 1))  

do i = 1, 64 
do j = 1, 32 
do k = 1, 128 
      A(k, j, i) = C(k, j, i) + B(i, k, j) 
enddo 
enddo 
enddo 
!$acc end parallel loop 

B(64,128,32)  B’(128,32,64)  
Transposed 

  

use Accelerator 

 A(k, j, i) = C(k, j, i) + B’(k, j, i) 



 Cooperative computing 

 Treat the host thread the same as device thread 

 N device threads, 1 host thread 

 N+1 threads execute the parallel loop 

 

 Add co_compute clause 

 Used on loop directive 

 annotate(co_compute) 

Other Extensions 

   #pragma acc parallel copyout(A) 

    {    

       #pragma acc loop annotate(co_compute) 

        for(i = 0; i < 130; i++) 

        {    

            A[i] = i; 

        }    

    }    



Threading 
library to 
manage 
threads on 
CPEs 

Similar to 
posix 
Pthreads 

Athread 
Routine Functionality 

int athread_init() Initialize the athread library 

int athread_create(int id, 
start_routine fpc, void *arg) 

Start a routine with id executing the function pointed by 
fpc, the parameters for the function fpc are pointed by arg 

int athread_wait(int id) Wait for the completion of the thread ID  

int athread_end(int id) Terminate the thread by specifying thread ID 

int 
athread_spawn(start_routine 
fpc, void *arg) 

Spawn a set of threads making use of all CPEs 

int 
athread_get_max_threads() 

Get the maximum number of active threads 

int athread_get_id() Get the ID of current threads 

…. 



Athread example 

MPE code CPE code 
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marine 
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More and more component models 



Increase in Spatial and Temporal Resolution to 
be Cloud-Resolving and Eddy-Resolving 



Simulation of Cloud 
Droplet Formation 

Simulation of more and more detailed physics processes 



Simulation of Cloud 
Droplet Formation 

Online 
Ensembles 

 
10240 
NICAM 

Samples on K 
computer 

Courtesy of Takemasa Miyoshi’s talk at 

BDEC 2017, Wuxi. 





The Gap between Software and Hardware 

49 

China’s supercomputers 
• heterogeneous systems with many-core chips 
• millions of cores 

China’s models 
• pure CPU code 
• scaling to hundreds or thousands of cores 

100T 

• millions lines of legacy code 
• poor scalability  
• written for multi-core, rather than many-core 

 

100P 
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China’s supercomputers 
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• pure CPU code 
• scaling to hundreds or thousands of cores 
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• millions lines of legacy code 
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• written for multi-core, rather than many-core 

 

100P 
• highly scalable framework that can efficiently utilize many-core processors 
• automated tools to deal with the legacy code 
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China’s supercomputers 
• heterogeneous systems with many-core chips 
• millions of cores 

China’s models 
• pure CPU code 
• scaling to hundreds or thousands of cores 

100T 

• millions lines of legacy code 
• poor scalability  
• written for multi-core, rather than many-core 

 

100P 
• highly scalable framework that can efficiently utilize many-core processors 
• automated tools to deal with the legacy code 



Highly-Scalable Atmospheric Simulation Framework 

52 

The “Best” Computational Solution 

Architecture 

Algorithm 
Application 

cloud resolving 

explicit, implicit, or 
semi-implicit method 

cube-sphere grid or 
other grid 

Sunway, GPU, MIC, FPGA 

C/C++, Fortran, MPI, CUDA, 
Java, …  

Wang, Lanning 
Beijing Normal University 
climate modeling 

Yang, Chao 
Institute of Software, CAS 
computational mathematics 

Xue, Wei 
Tsinghua University 
computer science 

Fu, Haohuan 
Tsinghua University 
geo-computing 



 Starting from shallow wave equation 
 cubed-sphere mesh grid 
 adjustable partition between CPU and GPU 
 scale to 40,000 CPU cores and 3750 GPUs with a sustainable performance of 

800 TFlops 

2012: 2D SWE Solver on Tianhe-1A 

53 
“A Peta-Scalable CPU-GPU Algorithm for Global Atmospheric Simulations”, in Proceedings of the 18th ACM SIGPLAN 

Symposium on Principles and Practice of Parallel Programming (PPoPP), pp. 1-12, Shenzhen, 2013. . 



2013: 3D Euler Equation Solver on Tianhe-2 

54 

A Sustained 
Performance of 
1.7 Pflops 

“Ultra-scalable CPU-MIC Acceleration of Mesoscale Atmospheric Modeling on Tianhe-2”, IEEE Transaction on Computers.  



 Customized mixed-preicion fully-pipelined hardware design 

 

 

 

 

 100x speedup over 6-core CPU, 5x speedup over GPU 

2013: 2D SWE Solver on FPGA 

55 
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“Accelerating Solvers for Global Atmospheric Equations Through Mixed-Precision Data Flow Engine”, in Proceedings of the 

23rd International Conference on Field Programmable Logic and Applications, 2013.  



 Customized mixed-preicion fully-pipelined hardware design 

 

 

 

 

 100x speedup over 6-core CPU, 5x speedup over GPU 

2013: 2D SWE Solver on FPGA 
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ROM
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±
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float(11,53)

fixed(?,38)

fixed(?,38)

float(8,32)

float(8,32)

float(11,53)

float(8,32)

output

Reconstruction

Rianan and stencil

float(11,53)

“Accelerating Solvers for Global Atmospheric Equations Through Mixed-Precision Data Flow Engine”, in Proceedings of the 

23rd International Conference on Field Programmable Logic and Applications, 2013.  

Selected as one of the 27 
Significant Papers of FPL in 25 
Years (27 out of 1765) 



racks chips core-groups cores total number of cores 

163,840 processes 65 threads 
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Uniform DD 

Plug & Play 

Now let’s find a 
way to design a 
subdomain solver. 



racks chips core-groups cores total number of cores 

163,840 processes 65 threads 

Parallel ILU with level-scheduling DD-MG K-cycle 

Two issues: 

1. Data locality 

2. Global synchronization 

0 1 

2 3 4 

6 7 8 
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9 

Level 0 

Level 1 

Level 2 



racks chips core-groups cores total number of cores 

163,840 processes 65 threads 

Async. parallel ILU of [Chow et al. SISC’15] DD-MG K-cycle 

Two issues: 

1. Multiple sweeps needed 

2. Global synchronization 



racks chips core-groups cores total number of cores 

163,840 processes 65 threads 

Geometry-based pipelined ILU (GP-ILU) 

Y
X

Z

8×8 8×8 

8×8 

8×8 

Two-level pipeline

blk_height

Synchronization avoiding

11

  dim_zblk_height1num_cores
cell_size

reg_size


DD-MG K-cycle 

Subdomain matrix 
of 1st-order with 
geometric index 

Our goal of design: 

1. Single sweep 

2. Synchronization-free 

3. Improved data-locality 



 

The 3-km res run: 1.01 SYPD with 10.6M cores, dt=240s, I/O penalty <5% 

Strong-scaling results 
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7.95 DP-PF 
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DOFs=772B 

“Exa-scale” 
  for exp 

 

The 488-m res run: 0.07 SYPD, 10.6M cores, dt=240s, 89.5X speedup over explicit 
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China’s supercomputers 
• heterogeneous systems with many-core chips 
• millions of cores 

China’s models 
• pure CPU code 
• scaling to hundreds or thousands of cores 

100T 

• millions lines of legacy code 
• poor scalability  
• written for multi-core, rather than many-core 

 

100P 
• highly scalable framework that can efficiently utilize many-core processors 
• automated tools to deal with the legacy code 



 

The CESM Project on Sunway TaihuLight 

64 

CAM5.0 POP2.0 

CLM4.0 CICE4.0 

CPL7 

CESM1.2.0 

Tsinghua + BNU 30+ Professors and Students 

• Four component models, millions lines of code 
• Large-scale run on Sunway TaihuLight 

• 24,000 MPI processes 
• Over one million cores 

• 10-20x speedup for kernels 
• 2-3x speedup for the entire model 

“Refactoring and Optimizing the Community Atmosphere Model (CAM) on the Sunway TaihuLight Supercomputer”, in 

Proceedings of SC 2016.  



a high complexity in application, and a heavy legacy in the 
code base (millions lines of code) 

an extremely complicated MPMD program with no 
hotspots (or hundreds of hotspots) 

misfit between the in-place design philosophy and the 
new architecture 

lack of people with interdisciplinary knowledge and 
experience  

Major Challenges 



CAM initial Dyn_run Phy_run1 Phy_run2 

Pass state variables Pass state variables and  tracers 

Pass tracers (u, v) to dynamics 

Workflow of CAM 

After initialization, the physics and the dynamics are executed in turn during each 
simulation time-step. 



 Entire code base: 530, 000 lines of code 

 

 Components with regular code patterns 
 e.g. the CAM-SE dynamic core 

 manual OpenACC parallelization and optimization on code and data structures 

 

 Components with irregular and complex code patterns 
 e.g. the CAM physics schemes 

 loop transformation tool to expose the right level of parallelism and code size 

 memory footprint analysis and reduction tool 

Porting of CAM: General Idea 



 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Euler_step: 

do ie = nets, nete 
    compute Q min/max values for lim8 
    compute Biharmonic mixing term f 
end do 

do ie = nets, nete 
     2D advection step 
     data packing 
end do 

Bonundary exchange 

Data extracting 

do ie = nets, nete 
    do k = 1, nlev 
        dp(k) = func_1() 
        do q = 1, qsize 
            Qtens(k,q,ie) = func_2(dp(k)) 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            qmin(k,q,ie) = … 
            qmax(k,q,ie) = … 
        end do 
    end do 
end do 

do ie = nets, nete 
    do q = 1, qsize 
        do k = 1, nlev 
            …. 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        dp0 = func_3() 
        dpdiss = func_4() 
        do q = 1, qsize 
            Qtens(k,q,ie) =   func_5(dp0, dpdiss) 
        end do 
    end do 
end do 
 

do ie = nets, nete 
    do k = 1, nlev 
        dp(k) = func_5() 
        Vstar(k) = func_6() 
    end do 
     
    do q = 1, qsize 
        do k = 1, nlev 
            Qtens(k,q,ie) = func_7(dp(k), Vstar(k)) 
         end do      

        do k = 1, nlev 
             dp_star(k) = func_8(dp(k)) 
        end do          
 
         do k = 1, nlev 
                Qtens(k,q,ie) = func_9(dp_star(k)) 
          end do 
    end do 
    Data packing 
end do 

1 

2 

Refactoring the Euler Step 



do ie = nets, nete 
    do k = 1, nlev 
        dp(k) = func_1() 
        do q = 1, qsize 
            Qtens(k,q,ie) = func_2(dp(k)) 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            qmin(k,q,ie) = … 
            qmax(k,q,ie) = … 
        end do 
    end do 
end do 

do ie = nets, nete 
    do q = 1, qsize 
        do k = 1, nlev 
            …. 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        dp0 = func_3() 
        dpdiss = func_4() 
        do q = 1, qsize 
            Qtens(k,q,ie) = 
                       func_5(dp0, 
dpdiss) 
        end do 
    end do 
end do 
 

do ie = nets, nete 
    do k = 1, nlev 
        dp(k) = func_5() 
        Vstar(k) = func_6() 
    end do 
     
    do q = 1, qsize 
        do k = 1, nlev 
            Qtens(k,q,ie) =  
      func_7(dp(k), Vstar(k)) 
         end do      

        do k = 1, nlev 
             dp_star(k) = func_8(dp(k)) 
        end do          
 
         do k = 1, nlev 
                Qtens(k,q,ie) =             
                           func_9(dp_star(k)) 
          end do 
    end do 
    Data packing 
end do 

optimized: 

do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            Qtens(k,q,ie) =  
           func_2(func_1()) 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            qmin(k,q,ie) = … 
            qmax(k,q,ie) = … 
        end do 
    end do 
end do 

do ie = nets, nete 
    do q = 1, qsize 
        do k = 1, nlev 
            …. 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            Qtens(k,q,ie) = 
                       func_5(func_3(),func_4()) 
        end do 
    end do 
end do 
 

do ie = nets, nete     
    do q = 1, qsize 
        do k = 1, nlev 
            Qtens(k,q,ie) =  
                       func_7(func_5(),func_6()) 
         end do      

         do k = 1, nlev 
                Qtens(k,q,ie) =       
                            
func_9(func_8(func_5()))  
         end do 
    end do 
    Data packing 
end do 
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Refactoring the Euler Step 



do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            qmin(k,q,ie) = … 
            qmax(k,q,ie) = … 
            Qtens(k,q,ie) = … 
        end do 
    end do 
end do 

do ie = nets, nete  
    do k = 1, nlev    
        do q = 1, qsize 
            Qtens(k,q,ie) = …         
         end do      
    end do 
end do 
Data packing 

do ie = nets, nete 
    do q = 1, qsize 
        do k = 1, nlev 
            qmin(k,q,ie) = … 
            qmax(k,q,ie) = … 
            Qtens(k,q,ie) = … 
        end do 
    end do 
end do 

do ie = nets, nete     
    do q = 1, qsize 
        do k = 1, nlev 
            Qtens(k,q,ie) = …         
         end do      
    end do 
end do 
Data packing 

!$ACC PARALLEL LOOP 
do ie_q = 1, qsize*(nete-nets) 
    do k = 1, nlev 
        q = func(ie_q) 
        ie = func(ie_q) 
        qmin(k,q,ie) = … 
        qmax(k,q,ie) = … 
        Qtens(k,q,ie) = … 
    end do 
end do 

!$ACC PARALLEL LOOP 
do ie_q = 1, qsize*(nete-nets)     
    do k = 1, nlev       
        q = func(ie_q) 
        ie = func(ie_q) 
        Qtens(k,q,ie) = …         
    end do      
end do 
!$ACC PARALLEL LOOP 
Data packing 

optimized: 

do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            Qtens(k,q,ie) =  
           func_2(func_1()) 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            qmin(k,q,ie) = … 
            qmax(k,q,ie) = … 
        end do 
    end do 
end do 

do ie = nets, nete 
    do q = 1, qsize 
        do k = 1, nlev 
            …. 
        end do 
    end do 
end do 
 
do ie = nets, nete 
    do k = 1, nlev 
        do q = 1, qsize 
            Qtens(k,q,ie) = 
                       func_5(func_3(),func_4()) 
        end do 
    end do 
end do 
 

do ie = nets, nete     
    do q = 1, qsize 
        do k = 1, nlev 
            Qtens(k,q,ie) =  
                     func_7(func_5(),func_6()) 
         end do      

         do k = 1, nlev 
                Qtens(k,q,ie) =          
                          func_9(func_8(func_5()))  
         end do 
    end do 
    Data packing 
end do 
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Refactoring the Euler Step 



column (col) 
…

… 

chunk 

……
 

pver 

 

Refactoring of the Physics Schemes 



do begin_chunk to end_chunk 
  tphysbc() 
  { 
    convect_deep_tend(6.47%) 
    convect_shallow_tend(15.57%) 
    macrop_driver_tend(8.38%) 
    microp_aero_run(4.29%) 
    microp_driver_tend(7.13%) 
    aerosol_wet_intr(4.29%) 
    convect_deep_tend_2(0.51%) 
    radiation_tend(54.07%) 
  } 
enddo 

tphysbc() 
{ 
  do begin_chunk to end_chunk 
    convect_deep_tend(6.47%) 
    convect_shallow_tend(15.57%) 
    macrop_driver_tend(8.38%) 
    microp_aero_run(4.29%) 
    microp_driver_tend(7.13%) 
    aerosol_wet_intr(4.29%) 
    convect_deep_tend_2(0.51%) 
    radiation_tend(54.07%) 
  enddo 
} 

tphysbc() 
{ 
  do begin_chunk to end_chunk 
    convect_deep_tend(6.47%) 
  enddo 
  …… 
 do begin_chunk to end_chunk 
    microp_driver_tend(7.13%) 
 enddo 
  …… 
 do begin_chunk to end_chunk   
    radiation_tend(54.07%) 
  enddo 
} 

do begin_chunk to end_chunk 
  convect_deep_tend(6.47%) 
  { 
    zm_conv_tend(6.47%) 
    { 
      zm_convr(2.03%) 
      zm_conv_evap() 
      montran() 
      convtranc(0.06%) 
    } 
  } 
enddo 
 

convect_deep_tend(6.47%) 
{ 
  zm_conv_tend(6.47%) 
  { 
      do begin_chunk to end_chunk 
        zm_convr(2.03%) 
      enddo 
      do begin_chunk to end_chunk 
        zm_conv_evap() 
      enddo  
      do begin_chunk to end_chunk 
        montran() 
      enddo 
     do begin_chunk to end_chunk 
        convtranc(0.06%) 
      enddo 
  } 
} 
 

1 2 
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Loop Transformation for Phys_run1 



Variable Storage Space Analysis and Reduction Tool 

 

• Estimate the storage requirements of the 
variable and arrays 

• Identify the lifespan of the variables and 
arrays 

• Determine whether the variables and arrays 
of each CPE thread can fit into the 64KB SPM. 

Basic functions 

•The original Fortran function accesses 7 
intermediate arrays (A to G) during the 
computation process. By analyzing the lifespan of 
these 7 arrays, which are annotated by the lines 
above these arrays, we can determine that 4 
arrays would provide sufficient space to store 
these 7 arrays in different stages of the execution 
process. 

Example Explanation 



Speedup of Major Kernels in CAM-SE 

7x to 22x speedup for computing intensive kernels;  
2x to 7x speedup for memory-bound kernels 



Speedup of Major Kernels in CAM-PHY 
The microp_mg1_0 kernel demonstrates a 
significant speedup of 14x, as the intermediate 
variables and arrays provide a nice fit to the 
SPM of the CPE clusters after the automated 
optimizations. 
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CAM model: scalability and speedup 

• million core scale, 2.81 SYPD 
• many-core refactoring for the 

entire model 
• competitive simulation speed to 

the same model on NCAR 
Yellowstone 



 swDNN: Provide interface for optimized basic operators 

 Fully-connected layer (BLAS); Pooling layer 

 Activation function; Batch Normalization  

 *Convolutional Layer(90% time for CNN) 

 

Library for Deep Learning (swDNN) 

77 

Work Platform Method 

cuDNN(2014) GPU GEMM 

fbtfft(2014) GPU FFT 

Andrew Lavin (2015) GPU Winograd  

Chen Zhang (2015) FPGA Direct Conv 

swDNN SW26010 Blocking GEMM 

Related Works on other architectures 



 Performance 

 Convolutional performance above 1.6 Tflops with double-precision 

 Speedup ranging from 1.91x to 9.75x compared with cudnnv5.1.  

 

Library for Deep Learning (swDNN) 
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 Distributed framework 

 Customized from Caffe with less dependencies 

 Two-level Parameter Server Based-on MPI 

 

Framework for Deep Learning (under development) 
 

79 

Sever-Cache

Global-Server

Worker Worker Worker

Worker Worker Worker

Sever-Cache

Worker Worker Worker

Worker Worker Worker

…



swDNN Supported Project: Sunway-Lingo 
  collaborated with Prof. Zhiqing Liu, BUPT 
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 Original go board to be processed 

 Converted to a 48-channel image fed to deep CNN with essential go features such as 
liberties 

 Order of probabilities of plausible moves as outputted by policy network 



 Traditional HPC Applications (Science -> Service) 

 weather / climate service 

 seismic data processing service 

 CFD simulation framework for Advanced Manufacturing 

 

 Deep Learning Related Applications 

 the swDNN framework 

 collaborating with face++ for face recognition applications 

 collaborating with Sogou for voice recognition and translation 

 customized DNN Sunway chip? 

 

 Big Data Center 

 National Health and Medical Big Data Center at Nanjing 

 

Long Term Plan 
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